
1

Interactive Isosurface Visualization in Memory
Constrained Environments Using Deep Learning and

Speculative Raycasting
Landon Dyken1,2, Will Usher3, and Sidharth Kumar2

Abstract—New web technologies have enabled the deployment
of powerful GPU-based computational pipelines that run entirely
in the web browser, opening a new frontier for accessible scientific
visualization applications. However, these new capabilities do not
address the memory constraints of lightweight end-user devices
encountered when attempting to visualize the massive data sets
produced by today’s simulations and data acquisition systems.
We propose a novel implicit isosurface rendering algorithm for
interactive visualization of massive volumes within a small memory
footprint. We achieve this by progressively traversing a wavefront
of rays through the volume and decompressing blocks of the
data on-demand to perform implicit ray-isosurface intersections,
displaying intermediate results each pass. We improve the quality
of these intermediate results using a pretrained deep neural
network that reconstructs the output of early passes, allowing
for interactivity with better approximates of the final image. To
accelerate rendering and increase GPU utilization, we introduce
speculative ray-block intersection into our algorithm, where
additional blocks are traversed and intersected speculatively
along rays to exploit additional parallelism in the workload. Our
algorithm is able to trade-off image quality to greatly decrease
rendering time for interactive rendering even on lightweight
devices. Our entire pipeline is run in parallel on the GPU to
leverage the parallel computing power that is available even
on lightweight end-user devices. We compare our algorithm to
the state of the art in low-overhead isosurface extraction and
demonstrate that it achieves 1.7×–5.7× reductions in memory
overhead and up to 8.4× reductions in data decompressed.

Index Terms—Isosurface rendering, GPU raycasting, large-scale
data techniques, deep learning.

I. INTRODUCTION

RECENT advances in web technologies, specifically We-
bGPU and WebAssembly, have enabled the development

of powerful GPU-based compute applications that run entirely
in the browser. Scientific visualization applications can leverage
these technologies to gain the ease of deployment and wide
accessibility afforded by the browser without sacrificing the
compute capabilities required to perform complex analysis and
visualization tasks. Recent works have achieved interactive
isosurface extraction on compressed data on the GPU [54],
GPU-parallel layout computation of large graphs [9], and multi-
channel volume rendering [20].

However, adopting a new technology alone does not address
the fundamental issues of limited memory and compute
capacity on lightweight end-user devices. Memory capacity

1ldyke@uic.edu
2University of Illinois at Chicago
3Luminary Cloud

constraints are a fundamental issue in scientific visualization
even when targeting high-end workstations, and are especially
problematic when processing the massive data sets produced by
current simulations and data acquisition systems on lightweight
consumer GPUs. While there exists a large body of work
on large-scale volume rendering approaches [4], deploying
such applications in the browser poses its own unique set of
additional challenges (see, e.g. [20], [54]). Native applications
typically leverage special purpose file formats to stream data
from disk (e.g. [7], [12], [16], [17]); however, web applications
are unable to perform such low-level I/O. Although prior work
has leveraged a server to stream subsets of data [20], [46], [49],
this introduces tradeoffs with latency and deployment cost.

Usher and Pascucci [54] recently proposed Block-
Compressed Marching Cubes (BCMC) to achieve interactive
isosurface extraction in the browser through on the fly de-
compression and caching of a compressed data set stored
on the GPU. They reduce latency by transferring the entire
compressed volume to the client, eliminating the need for a
complex server, and achieve interactive isosurface extraction
times through a fully GPU-driven decompression, caching, and
isosurfacing pipeline. However, their approach extracts explicit
surface geometry and thus its memory and compute costs scale
with the size of the data set and the number of output triangles.
BCMC is thus unable to render large data sets on lightweight
devices as it runs out of memory to store the vertices.

In this paper, we begin from the on the fly GPU decompres-
sion strategy of Usher and Pascucci [54]; however, we make
deliberate design choices to reduce memory consumption and
the impact of data set size on memory footprint and compute
cost. First, we eliminate the need to store a large triangle
mesh for the surface by adopting an implicit ray-isosurface
intersection approach [33]. Next, to avoid processing fully
occluded blocks, we progressively traverse a wavefront of rays
through the volume in a multipass approach, decompressing
just the visible blocks in each pass. To address utilization issues
that would arise when few active rays remain, we introduce
ray-block speculation to exploit additional parallelism on the
GPU to find intersections. Finally, we leverage a deep neural
network to greatly enhance intermediate output from partially
rendered images produced by the early passes of our progressive
algorithm, allowing for better interactivity and further reduced
memory use. Our algorithm can be easily scaled down to run
on low power devices, as its costs are primarily tied to the
image size. Our contributions are:

• A novel progressive algorithm for implicit isosurface

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

Fig. 1: Isosurface visualization of the 2048×2048×1920 Richtmyer-Meshkov (R-M) data set in the browser. Our method renders this 32.2GB volume using
just 4.2GB of memory. Left: after 85% of rays have completed traversal (active rays colored red); Middle: machine learning infill and reconstruction on the
85% image; Right: ground truth. We propose a new GPU algorithm for implicit isosurface rendering that progressively traverses rays through the volume and
decompresses data on-demand to minimize memory requirements. Intermediate results can be drastically improved by reconstruction with our pretrained deep
learning network. At 1280×720, the Richtmyer-Meshkov reaches 85% completion in 339ms and 100% completion in 911ms on a laptop RTX 4070. Inference
time takes 68ms using ONNX Runtime Web, and only 16ms using TensorRT. We achieve up to 5.7× reductions in overall memory use and 8.4× reductions in
data decompressed compared to the state of the art in memory constrained isosurface extraction [54].

raycasting that works directly on compressed data on
the GPU;

• A per-pass view-dependent decompression and caching
strategy built into the algorithm to minimize its memory
footprint;

• A technique for displaying high-quality intermediate
results and improving interactivity through deep learning
based image in-fill;

• A dynamic work speculation strategy that exploits ad-
ditional parallelism in the workload to increase GPU
utilization and accelerate rendering completion;

• Evaluation of our algorithm against the state of the art on
data sets with up to 8.05B voxels on lightweight end user
devices.

II. RELATED WORK

In Section II-A, we review recent work on bringing scientific
visualization to the browser. Visualizing large-scale volumetric
data is a fundamental problem in scientific visualization,
and has been deeply explored (see surveys by Beyer et
al. [4] and Rodriguez et al. [2]). Isosurface visualization
techniques can be categorized as explicit surface extraction
methods (Section II-B), or implicit surface rendering methods
(Section II-C). Due to the similarities in isosurface ray-casting
and ray-guided volume rendering algorithms, we also review
relevant work on raycasting large volumes in Section II-D.
Finally, we review relevant previous work on applying deep
learning techniques for volume visualization in Section II-E.

A. Scientific Visualization in the Browser

Bringing scientific visualization to the browser greatly
expands accessibility, enabling more scientists to gain better
insights about their data. Prior work has brought compelling
applications to the browser through the use of server-side
processing, local GPU acceleration, and combinations thereof.

Server-based techniques move all computation to the server
and stream images to the client [10], [24], [40]–[42], allowing
lightweight clients to access large amounts of compute power.

However, such approaches can face issues with latency, cost,
and quality of service when faced with supporting large
numbers of concurrent users. Prior work has demonstrated
leveraging a remote server to query and stream subsets of
data to the client for rendering [46], [49], thereby balancing
between remote and local processing costs. Although moving
the rendering work to the client reduces the impact of server
latency and quality of service, such approaches can face similar
issues as fully server-side approaches at scale.

In this work, we target a fully client-side approach to
eliminate the need for backend servers and related challenges.
We note that a combination of client- and server-side processing
can provide the best scalability and performance for large data
visualization; here we focus solely on expanding the capabilities
of the client. Prior to WebGPU, browser applications leveraged
WebGL to perform GPU accelerated rendering in applications
ranging from LiDAR visualization [46] to volume render-
ing [36] and neuroscience [23], [49]. A fundamental limitation
of WebGL compared to WebGPU is the lack of support for
general compute shaders; although Li and Ma [27] proposed
a method to work around this limitation by repurposing the
rendering pipeline to perform a subset of parallel compute
operations.

With the recent development of WebGPU, browser appli-
cations now have access to general purpose GPU compute
and advanced rendering capabilities. Usher and Pascucci [54]
leveraged WebGPU to deploy a GPU-driven isosurface extrac-
tion pipeline that achieved interactive visualization of massive
data sets entirely in the browser. Dyken et al. [9] presented a
graph layout algorithm in WebGPU to accelerate layout and
rendering of large graphs. Herzberger et al. [20] used WebGPU
and WebAssembly to build an efficient multi-channel volume
rendering approach with a custom data structure that combines
the advantages of page tables and octrees.

B. Explicit Isosurface Extraction

Marching Cubes [32] is an object-order technique that
computes explicit triangle geometry for each voxel to render
the isosurface. The extracted triangle geometry can then be

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

5

4

3

2

1

0

RBID = {-1, 1, 4, 8, 12, -1}

MBAct = {0, 1, 1, 0,
 1, 1, 1, 0,
 1, 1, 0, 0,
 1, 1, 0, 0}

MBVis = {0, 1, 0, 0,
 1, 0, 0, 0,
 1, 0, 0, 0,
 1, 0, 0, 0}

RID = {0, 1, 2, 3, 4, 5}

(a) Macro Traverse

(d.3) Compact Active Ray IDs

 and Sort by Block ID

(b) Mark Visible & Active Blocks

(d) Build Raytracing Kernel Inputs

(e) Raytrace Visible Blocks

(f) Compute Number of Active Rays

(d.1) Stream Compact

Visible Block IDs

(d.2) Count Visible Block

Rays and Prefix Sum

(c) LRU Cache Update

 & Decompress New Blocks

0,0

4,4

NBRays = {1, 1, 1, 1}

OBRays = {0, 1, 2, 3}
MRAct = {0, 1, 1, 0, 0, 0}

NAct = 2

IRAct = {1, 2, 3, 4}

MRAct = {0, 1, 1, 1, 1, 0}

IRActBID = {1, 4, 8, 12}

IBVis = {1, 4, 8, 12} B12

4

B4

2

B0

1

B8

3

Fig. 2: An illustration of our algorithm’s core loop on a slice of a 163 volume. (a) The volume has a single coarse macrocell (orange) with a 43 grid of ZFP
blocks within it. After computing the initial set of rays we repeat steps (a-f) until all rays have terminated, displaying the partial image after each pass. (a)
Rays are advanced to the next active block (green), storing its ID in RBID. Rays one and two traverse blocks whose value range combined with their neighbors
contains the isovalue, indicating that their dual grid may contain the isosurface. (b) Blocks in RBID are marked visible and active (MBVis, green), and their
neighbors to the positive side marked active (MBAct , blue). The neighbors are required to populate the visible block’s dual grid. (c) MBAct is passed to the LRU
cache [54], which decompresses and caches any new blocks, potentially evicting those that are no longer needed. (d) We then prepare the inputs for the block
raytracing kernel through stream compactions and parallel sorts on the GPU. (e) Each block traverses its rays through its local data, terminating those that
intersect the isosurface. (f) Finally, we compute the remaining number of active rays to check completion and display the current image to the user.

rendered interactively. Subsequent work proposed constructing
interval trees [5] or k-d trees over the span space [31] to
accelerate Marching Cubes by skipping voxels that do not
contain the isosurface. Isosurface meshes can contain large
numbers of triangles, many of which will be occluded or
subpixel for a given viewpoint. Livnat and Hansen [30]
proposed a view-dependent technique that traversed an octree to
find voxels to extract triangles from. Rendered triangles updated
an occlusion buffer used to skip occluded octree nodes. Recent
work has focused on leveraging parallel execution on GPUs
to accelerate computation [6], [8], [26], [29], [34], [45], [54].
However, prior work has assumed that the entire volume fits
in the memory of a single GPU [8], [26], [29], [45].

Usher and Pascucci [54] proposed the Block-Compressed
Marching Cubes (BCMC) algorithm for interactive GPU-
parallel isosurface extraction on massive data sets. BCMC
uploads a ZFP fixed-rate compressed volume to the GPU
and decompresses and caches the blocks required for a given
isosurface on demand using GPU decompression and an LRU
cache. BCMC achieves interactive isosurface extraction times
on consumer GPUs; however, as with other surface extraction
techniques, it produces large vertex buffers and its cost scales
with the total number of blocks containing the isosurface.
Although we adopt a similar on-demand decompression and
caching strategy, we do not store a vertex buffer and processes
blocks in a view-dependent wavefront to reduce memory use
and the impact of data size on scalability.

C. Implicit Isosurface Rendering

Parker et al. [38] proposed the first implicit isosurface
rendering technique, where rays were traversed through the
volume grid, and ray-voxel intersections computed directly
by solving a cubic polynomial. Parker et al. [38] accelerated
ray-traversal by skipping empty space using a multi-level grid
hierarchy. Marmitt et al. [33] improved the quality and speed
of ray-voxel intersection through a root finding approach based
on isolation and iterative root finding. Wald et al. [55] further
accelerated empty space skipping through an implicit k-d tree
that tracked value ranges of subregions of the volume.

Hadwiger et al. [18] proposed an implicit isosurface render-
ing technique that combined object and image order empty
space skipping to accelerate rendering, coupled with a brick
cache to reduce memory use. Their algorithm constructs a fine
grid over the volume and rasterizes the cells that potentially
contain the isosurface to generate ray start and end positions,
then performs ray marching on the GPU to find intersections in
these intervals. Hadwiger et al. employed a brick cache using
a coarse grid to reduce memory use, data for a grid cell is only
uploaded to the GPU if its value range contains the isovalue.
However, this strategy does not take into account visibility, and
will upload data for occluded regions of the volume. In contrast,
our algorithm performs data decompression on-demand as rays
traverse the volume, reducing the working set to just the blocks
visible in a single pass. Moreover, our proposed decompression
and caching pipeline runs entirely on the GPU, eliminating
CPU communication bottlenecks.

D. Ray-guided Large Volume Rendering

A large body of work has explored techniques to address
memory constraints in ray-guided volume rendering [4], [7],
[11], [12], [16], [17], [20], which we briefly review here due to
their applicability to implicit isosurface raycasting. Ray-guided
techniques for large volume rendering typically combine GPU-
driven cache requests, made as rays encounter missing data
during traversal, with a CPU-side data management system that
services these requests by uploading new data to the GPU [7],
[12], [16], [17], [20]. The CPU-side data management system
is typically coupled with a special purpose file format and
takes advantage of low-level file system APIs to efficiently
stream massive data sets off disk. Prior work has demonstrated
interactive rendering of data sets ranging in size from hundreds
of gigabytes [12] to terabytes [7], [16], [17].

Volume rendering techniques that operate on compressed
data have been proposed to alleviate disk space and in-
memory working set requirements [2], [13]–[15], [35], [44],
[56]. Schneider and Westermann [44] proposed a hierarchical
quantization scheme that decomposes the data into 43 blocks
and computes a 1/4 resolution quantized representation of each

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

block along with two codebooks for the volume. Fout et al. [13],
[14] proposed a vector quantization technique combined with
deferred filtering for two-pass slice-based rendering, using a
decompression pass followed by a filtering one. Subsequent
works have leveraged compressed GPU textures [35], combi-
nations of bricking, quantization and run-length encoding [56],
and extending these techniques with tensor approximations [52]
and octrees over compressed blocks [15].

Similar to prior work, we adopt a brick-based compression
scheme to allow decompression of spatial subregions on-
demand. While we use ZFP [28] in this work, it is possible
to leverage other brick-based compression schemes, and to
combine our method with multiresolution hierarchies to address
undersampling or with out-of-core streaming to support larger
data sets.

E. Deep Learning for Volume Visualization

In recent years, deep learning techniques have been success-
fully used to improve the performance of volume visualization
tasks through a myriad of different methods. These methods
work to either reduce the number of data samples required
for rendering [3], [58], [60], or create simplified volume
representations to sample from [59], [62]. As our method
reconstructs isosurface images from intermediate rendering
results, the reconstruction task we target is most similar to the
former methods, and we discuss those in more detail.

Reducing data samples by upscaling isosurface images from
low resolution depth and normal field samples was shown by
Weiss et al. [58], who proposed a recurrent super-resolution
network. Bauer et al. [3] used deep learning based image
denoising techniques to reconstruct full volume rendering
frames from foveated sparse input, with great performance
gain. Weiss et al. [60] show the possibility of a network
for learning adaptive sampling and image reconstruction for
volume visualization with one joint neural network. While
these techniques all involve inferring full-resolution frames
of volume datasets, they differ from our target task in that
the sampling patterns of the input to the networks are either
uniform [58], generated from sampling maps built from noise
patterns around a focal point [3], or inferred from a trained
importance network [60]. In contrast, our network input is
simply the output of early passes of our multipass progressive
rendering algorithm, and the sampling pattern is determined
solely by which rays happen to terminate in these passes.

III. PROGRESSIVE WAVEFRONT ISOSURFACE RAYCASTING

Our algorithm is designed with a focus on reducing overall
memory consumption and on achieving scalable and control-
lable rendering performance that is not strongly impacted by
the data set size. These properties enable the algorithm to
be used for visualizing massive data sets in the browser on
lightweight end user devices. To achieve this, we propose
an implicit isosurface raycasting algorithm that progressively
traverses a wavefront of rays through a block-compressed
volume (Figure 2). In each pass, new visible blocks that
potentially contain the isosurface are decompressed and cached
in an LRU cache to enable re-use of decompressed blocks

across passes. Thus our algorithm’s memory footprint and
compute cost is dependent on the image size, view position,
and isovalue. The progressively rendered image is displayed
after each pass to improve interactivity.

At a high-level, our algorithm proceeds as follows. First, vol-
ume data compressed using ZFP’s [28] fixed-rate compression
mode is uploaded to the GPU. We then construct a two-level
macrocell grid [38] on the GPU to accelerate ray traversal
(Section III-A). For each new isovalue or camera viewpoint,
we compute the view rays for each pixel (Section III-B). The
following steps are then repeated to traverse the wavefront of
rays through the volume to progressively render the isosurface
(see Figure 2). First, we traverse the rays through the macrocell
grids to find the next block they must test for intersections with
(Figure 2a, Section III-C). We then mark all the blocks that are
visible or active in the current pass (Figure 2b, Section III-D).
The data for uncached blocks are decompressed using a
WebGPU port of ZFP’s CUDA decompressor, and cached
for re-use between passes through a GPU-driven LRU cache,
as done by Usher and Pascucci [54] (Figure 2c, Section III-E).
We then construct arrays of the visible block IDs, the number
of rays intersecting each block, and the ray IDs sorted by
their block ID to provide inputs to the block raycasting kernel
(Figure 2d, Section III-F). Each block then intersects its rays
with its local region of data to find ray-isosurface intersections
(Figure 2e, Section III-G). Finally, we compute the remaining
number of active rays to determine if rendering has completed
(Figure 2f) and display the current image.

A. Macrocell Grid Construction

As done by Usher and Pascucci [54], we leverage the 43

block decomposition of the volume used by ZFP’s fixed-rate
compression mode to define a macrocell grid over the volume.
The macrocell grid is used to skip blocks that do not contain
the isovalue [38], and thereby skip decompressing them. In
addition to the ZFP block macrocell grid, referred to as the
fine grid, we compute a coarse macrocell grid by grouping 43

regions of ZFP blocks to form coarse cells. Each coarse cell
contains 163 voxels, allowing larger regions of space to be
skipped more efficiently to accelerate the rendering of sparse
isosurfaces. The value range of each cell in the fine (or coarse)
grid is computed by combining the range of the cell’s voxels
(or blocks) with those of its neighbors in the +x/y/z direction.
The neighbor ranges are required to ensure we do not miss
values contained in the cell’s dual grid, which would lead to
cracks.

When a new volume is loaded, we compute the value
range of each block and then combine each cell’s range with
its neighbors to populate the coarse and fine grids. These
computations are run in parallel on the GPU. We note that our
approach can be combined with an octree or other hierachical
multiresolution acceleration structure over the ZFP blocks for
LOD, rather than a two-level grid.

B. Compute Initial Rays

For each new camera position or isovalue, we begin by
computing the initial camera rays. This is done through a

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

5

4

3

2

1

4

3

2

1

2

1

2

1

2

1

0

(a) Initial Rays (b) Pass 1

NAct = 4

(c.1) Pass 2

Speculation

Enabled

No Speculation

Utilization: 66%

Utilization: 83%

Utilization: 33%

(d) Pass 2, Speculation

NAct = 2
NSpec = 3

NAct = 2

Utilization: 33%

NAct = 2

(c.2) Pass 3

Fig. 3: An illustration of the ray traversal passes for an example isosurface on a 163 volume, without (b, c.1, c.2) and with (b, d) speculation. Green squares
mark the blocks currently being traversed by a ray. (a) Four of the six initial rays intersect the volume’s bounds. (b) Pass one is identical in both cases, as not
enough rays have terminated to enable speculation. (c.1, c.2) Without speculation, rays one and two traverse one block at a time until they hit the isosurface,
requiring two additional passes with low GPU utilization to complete the rendering. (d) With speculation, enough rays have terminated after pass one that
NSpec = 3, increasing utilization to 83% and completing the rendering in one additional pass by intersecting rays one and two against multiple blocks. A
trade-off of speculative execution strategies is the potential for wasted computation. This is illustrated by ray two, which traverses an extra occluded block in
pass two. Overall, our speculative execution strategy significantly reduces the total number of passes, and thus total time, required to render isosurfaces.

standard GPU volume raycasting approach where the backfaces
of the volume’s bounding box are rasterized and ray directions
computed in the fragment shader [51]. The fragment shader
writes the pixel’s ray direction and the t value that it enters
the volume out to an image-sized ray data buffer, requiring
16 bytes per-ray. Rays that miss the volume are marked as
terminated.

C. Macrocell Grid Traversal

Each pass of the wavefront ray traversal begins by finding the
next block along the ray that potentially contains the isosurface
(Figure 2a). We traverse the two-level macrocell grids using the
algorithm of Amanatides and Woo [1], skipping cells whose
value range does not contain the isovalue. Rays begin by
traversing the coarse grid. When a coarse cell containing the
isovalue is encountered, we traverse the 43 grid of its blocks to
determine if the ray intersects a block containing the isovalue.
If such a block is found, we record the block ID for the ray in
RBID, save the coarse and fine grid iterator traversal states, and
exit the macrocell grid traversal kernel. RBID is an image-sized
buffer that stores the block ID each ray intersects, or UINT_MAX
if none. Rays that exit the volume are marked as terminated.
The macrocell grid traversal is run over all w×h rays; rays
that have terminated simply early exit from the kernel.

The grid iterator states are saved and restored between passes
to ensure that we do not skip cells due to precision issues that
would occur when simply tracking the ray’s current t value.
Iterator states are stored in an image-sized buffer that tracks
tmax and the current cell ID, requiring 16 bytes per-grid for a
total of 32 bytes per-ray.

D. Mark Visible and Active Blocks

Next, we determine which blocks need to be decompressed to
process ray-block intersections (Figure 2b). A block is marked
both visible and active if a ray is traversing it (Figure 2b,
green blocks); blocks that are +x/y/z neighbors of visible
blocks must also be decompressed to provide data for the
visible block’s dual grid, and are marked active (Figure 2b,
blue blocks). This pass is run on the GPU over the entire
RBID buffer, and thus scales with the image size rather than

the number of blocks. Kernel invocations for terminated rays
simply exit early.

E. GPU-driven LRU Block Cache

The buffer marking active blocks, MBAct, is passed to the
GPU-driven LRU block cache of Usher and Pascucci [54] to
produce a list of the new blocks that need to be decompressed
and cached for the current pass (Figure 2c). These blocks are
decompressed into their assigned cache slots using a WebGPU
port [54] of ZFP’s [28] CUDA fixed-rate decompression
algorithm. Rays are likely to require data from the same blocks
traversed in the previous few passes. The data from these
blocks will be readily available in the cache, reducing the
decompression cost for the pass. Similarly, rays are likely to
require data from the same blocks as their neighbors in a given
pass. Shared blocks will be decompressed once and cached,
amortizing the decompression workload over multiple rays.

Performing the cache update each pass allows us to re-
place unneeded blocks with new ones each pass, reducing
the algorithm’s working set to just the active blocks in an
individual pass. This is in contrast to surface extraction based
methods [54], which decompress and store all the blocks
that potentially contain the isosurface at once, regardless of
visibility.

F. Build Raytracing Kernel Inputs

At this point, we have all the volume and ray data required
to traverse rays through the blocks they intersect and test for
ray-isosurface intersections. However, a large number of rays
will likely traverse the same block in each pass. If we were to
run the raytracing kernel in parallel over the rays we would
waste bandwidth by repeatedly re-loading the same block from
memory. Instead, we run the raytracing kernel in parallel over
the visible blocks. The raytracing kernel then loads each block’s
dual grid from memory just once and computes ray-isosurface
intersections for the rays passing through it.

The inputs to the raytracing kernel are the list of visible
block IDs (IBVis), the number of rays intersecting each block
(NBRays), the offsets to the block’s set of rays (OBRays), and the
active ray IDs sorted by their block ID (IRAct). These inputs are

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

0 10 20 30 40 50 60 70
Pass

0

20

40

60

80

100
U

til
iz

at
io

n
(%

)

Speculation Enabled
Speculation Disabled
Speculation Count

0

10

20

30

40

50

60

70

S
pe

cu
la

tio
n

C
ou

nt

(a) Spec. Enabled: 7 passes, 1269ms,
Spec. Disabled: 71 passes, 6025ms.

0 10 20 30 40 50 60 70
Pass

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Speculation Enabled
Speculation Disabled
Speculation Count

0

10

20

30

40

50

60

70

S
pe

cu
la

tio
n

C
ou

nt

(b) Spec. Enabled: 5 passes, 922ms,
Spec. Disabled: 57 passes, 4527ms.

0 10 20 30 40 50 60 70
Pass

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Speculation Enabled
Speculation Disabled
Speculation Count

0

10

20

30

40

50

60

70

S
pe

cu
la

tio
n

C
ou

nt

(c) Spec. Enabled: 8 passes, 1466ms,
Spec. Disabled: 69 passes, 6892ms.

Fig. 4: Our speculative ray traversal improves GPU utilization to reduce the number of passes needed to render the isosurface by 10× on average, thereby
reducing the total time to complete the isosurface by 4.8× on average. Although average time per pass roughly doubles, this is more than made up for by the
reduction in the total number of passes required. The vertical black lines mark when the surface was completed for each configuration. The dotted green line
shows the speculation count, which is increased as rays terminate to process additional speculated ray-block intersections for the remaining active rays in
parallel to terminate them sooner. Timings are reported on an RTX 3080. Datasets shown are a) TACC b) Plasma c) Miranda.

produced through a series of stream compactions, prefix sums,
and parallel sorts on the GPU (Figure 2d). The list of visible
block IDs, IBVis, is computed via a stream compaction. The
number of rays intersecting each block, NBRays, is computed
using a kernel run for each ray that atomically increments the
block’s ray count. The offset to each block’s set of ray IDs,
OBRays, is computed by perfoming a prefix sum on NBRays.
Finally, we compute the list of active ray IDs (IRAct) sorted by
their block ID (IRActBID) by compacting the active ray IDs and
their block IDs, then performing a parallel sort by key, using
the block ID as the key.

G. Raytracing Visible Blocks

The raytracing kernel is run in parallel over the visible
blocks, and is responsible for taking the set of rays intersecting
the block and traversing them through its dual grid to find
ray-isosurface intersections (Figure 2e). The kernel consists
of two steps: loading the block’s dual grid data into shared
memory, followed by traversing the rays through the dual grid
to compute intersections.

The block’s dual grid consists of its local data combined with
the face/edge/corner values from its neighbors in the +x/y/z
direction, if those neighbors exist. We employ the parallel
loading strategy of Usher and Pascucci [54] to load the dual
grid data into shared memory. Kernel work groups are launched
with 64 threads, corresponding to one thread per dual grid cell,
and have a work group shared memory region with room for 53

floating point values to store the full set of local and neighbor
values for the dual grid. First, the work group loads the 64
vertices corresponding to the block’s local 43 data into the
shared memory region, after which a subset of threads load
data from the +x/y/z face, edge, and corner neighbor blocks
to complete the dual grid. Finally, the work group synchronizes
on a memory barrier to ensure the complete dual grid data is
visible to all threads in the group.

With the dual grid loaded into shared memory, we can now
traverse rays through it to find ray-isosurface intersections.
The 64 threads in the work group are used to process the
block’s rays in parallel in chunks of 64 rays, with each thread
responsible for a different ray in the chunk. We again use
the Amanatides and Woo [1] grid traversal algorithm to step

rays through the dual grid. Ray-isosurface intersections are
computed using the ray-voxel intersection technique of Marmitt
et al. [33]. If an intersection is found, the shaded color and
depth is output to the ray’s pixel in the framebuffer and the
ray is marked as terminated.

IV. INCREASING GPU UTILIZATION WITH SPECULATION

Our algorithm as described in Section III achieves isosurface
rendering of massive data sets within a small memory footprint.
However, we observed that the algorithm would take a large
number of passes to complete the isosurface on average. Each
pass incurs some fixed time costs, and this translated into
long total surface rendering times. We further observed that,
on average, after 10 passes there were < 20% of rays still
active, and that by pass 25 there were < 1% of rays still active
(see Figure 4). These long tail rays are those that just miss
the surface and must be traversed through many blocks before
finding an intersection or exiting the volume.

To address this issue, we extend our algorithm to enable
speculative intersection of rays with additional blocks to
terminate rays in fewer passes (Figure 3). We treat the various
image-sized ray and block data buffers used by our algorithm
as a virtual GPU with w×h threads and memory slots. As rays
terminate, these slots become available for other active rays to
use for speculation. For simplicity we use a constant speculation
count for all rays, defined as NSpec = ⌊w×h

NAct
⌋, where NAct is the

number of active rays. To balance between terminating rays
in fewer passes and performing unnecessary computation, we
limit the speculation count to a maximum of 64.

The following modifications are made to the algorithm
described previously (Section III) to enable speculation. The
macrocell grid traversal kernel now advances each ray through
NSpec blocks, recording multiple block IDs for each ray
(Section IV-A). As the macrocell grid traversal will write out
the same ray ID NSpec times in RID, ray IDs in the buffer
are no longer unique identifiers, and we must introduce an
additional speculated ray-block offset buffer to the raytracing
kernel inputs (Section IV-B). To prevent speculated ray-block
intersections from trampling each other’s results, the block
raytracing kernel is modified to write intersection results out
to a new RGBZ buffer instead of directly to the framebuffer
(Section IV-C). A new kernel is introduced to select the closest

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

hit found, if any, for a given ray and write the final color to
the framebuffer (Section IV-D). At the end of each pass, we
keep the prefix sum result buffer OAct that is produced when
computing NAct and update NSpec. OAct is used to assign offsets
in RID and RBID to the remaining active rays.

A. Speculative Macrocell Grid Traversal

Our speculative macrocell grid traversal performs the same
traversal as before (Section III-C), with the key difference being
that it traverses the ray until finding up to NSpec visible blocks
instead of just one (see Figure 3), and records all the visible
block IDs encountered to be tested for intersections. The set
of blocks being traversed by a given ray may be disconnected
due to empty space-skipping.

The macrocell grid traversal kernel is run over all w× h
pixels as before, with terminated rays exiting early. The NSpec
entries for each active ray are written at offsets given by o =
OAct[ray]×NSpec. The visible block IDs for each active ray are
written into RBID starting at o, with up to NSpec entries written
for each ray. If the ray exits the volume early, its remaining
RBID entries are left filled with UINT_MAX and filtered out in
subsequent passes in the manner as terminated rays. The ray
ID buffer, RID, is populated by writing out NSpec entries of
the ray ID starting at o. As before, each ray maintains just
one coarse and fine grid iterator state. The iterator states are
saved out after NSpec visible blocks have been found, to resume
traversal after the last block being intersected in the pass.

As each speculated ray-block intersection writes its block ID
to the RBID buffer as before, the mark visible and active blocks
kernel does not require modification to support speculation.
The kernel is run over the entire RBID buffer and marks blocks
active as before, with the only difference being that some
visible block IDs in the buffer correspond to speculated ray-
block intersections.

We take note that, for sparse volumes and viewpoints of
an isosurface outside the surface, most rays terminate in the
first macro traverse of our algorithm through only empty
space skipping, never intersecting an isovalue-containing block.
Because of this, the first pass of our algorithm would not utilize
buffer space to check for intersections well. To remedy this,
we perform two macro traverse steps in the first pass of the
algorithm: the first step only terminates rays through empty
space skipping, then we compute NSpec using the number of
active rays, and immediately run the second macro traverse
step using this count. The rest of the pass proceeds as normal.

B. Build Speculated Raytracing Kernel Inputs

The construction of the inputs for the raytracing kernel when
speculation is enabled is nearly identical to the step without
speculation (Section III-F). The key difference is that ray IDs
are now repeated NSpec times in the active ray ID buffer IRAct,
meaning that the ray ID alone is no longer a unique identifier
for a ray-block intersection.

We introduce an additional offset buffer, OSpec, that assigns a
unique index to each ray-block intersection. OSpec is produced
by scanning the buffer that marks active ray-block intersections,
MRAct. MRact is produced as before during the compaction of

active ray IDs (Figure 2d.3). As with IRAct, OSpec is compacted
down to just the entries for active ray-block intersections and
sorted by block ID to match the order of IRAct. The list of
visible block IDs (IBVis), the number of rays to process for
each block (NBRays), and the offsets (OBRays) are produced as
before.

C. Raytracing Visible Blocks with Speculation

With the entries in IRActive, IBVis, NBRays and OBRays already
accounting for speculated ray-block intersections, few modifi-
cations are needed to the raytracing kernel. As before, after
loading the dual grid data each visible block reads its ray IDs
from the offset given in OBRays and traverses the rays through
its dual grid to find ray-isosurface intersections. However, as
intersections may be found in multiple blocks for a given ray
when speculation is enabled, the kernel is modified to output
intersection results to a new RGBZ buffer instead of directly
to the framebuffer. Color and depth values for ray-isosurface
intersections are written at offsets given in OSpec for the ray-
block intersection.

D. Depth Compositing Speculated Intersections

The final step in our speculative rendering pipeline is to
perform depth compositing on the set of intersections found
for each ray. A kernel is run for each active ray that iterates
through its NSpec potential intersections to select the closest
one, if any, and writes it to the framebuffer. We note that
it would be possible to skip the depth compositing step if
WebGPU supported 64-bit atomics, as the depth sorting could
be performed using atomic min operations in the raytracing
kernel instead [47]. Rays that exit the volume without finding
a hit are also marked as terminated in this step.

E. Optimizing Utilization by Starting with Speculation

Our speculative traversal algorithm decouples the number
of blocks checked for ray-block intersections from the image
size. The algorithm can be configured to search for an arbitrary
number of intersections per pass by increasing the size of
our ray and block data buffers instead of only waiting for
rays to terminate. By increasing these buffers’ size from
w× h to w× h× s, we effectively set a guaranteed starting
speculation count s. Increasing the starting speculation count
increases the size of the virtual GPU and could lead to higher
physical GPU utilization on more powerful systems, at the
trade off of slightly higher memory consumption and potentially
unnecessary computation. In Section VI we explore the effect
of increasing the starting speculation count.

V. DEEP LEARNING FOR INTERMEDIATE IMAGE IN-FILL

Although speculation improves utilization and runtimes
substantially (Figure 4), we still observe that the later passes
with few highly-speculated glancing rays contribute dispropor-
tionately to the total surface rendering time. As our algorithm
progressively builds up the image over multiple passes, it
is simple to stop the rendering after it has reached some
image completion threshold. Benchmarks on all machines and

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

datasets show that average rendering speedups of 2.54×, 2.02×,
and 1.63×, could be achieved when only completing 85%,
90%, and 95% of the image respectively. This motivates us to
explore a deep learning approach that can improve the quality
of these 85%, 90%, and 95% complete images, replacing
the computationally expensive final passes of our renderer
with a dataset-independent inference step. Skipping these final
passes improves interactivity by quickly providing high-quality
approximations of the completely rendered image, and when
full accuracy is needed, inference can be disabled or 100%
completion can be required.

A. Network Architecture

Although our target is reconstruction of 85-95% complete
images, due to rays skipping through empty space terminating
immediately and volumes having turbulent surfaces, in many
cases the regions to be inferred are surrounded with only
sparse input. Thus we follow the network architecture of
Bauer et al. [3] for reconstruction of sparse images, and
adopt FoVolNet’s two-stage hybrid architecture for our model.
This architecture is based on W-Net [53], and utilizes two
U-Net [43] networks in sequence. The first network is used
for directly filling in the incomplete image and the second
for refining output to a high-quality final image. To produce
temporally stable output over sequences of frames, several
recurrent connections are made to accumulate state over time.

While FoVolNet’s architecture is designed with a focus on
inference speed, limitations of targeting lightweight devices in
the browser necessitate some adaptations for our use case.
First, while their work is able to take advantage of post-
training quantization and half-precision floating point format to
optimize performance, these are not currently supported in web-
based machine learning inference engines. Additionally, while
their work targets systems with dedicated graphics cards, we
focus our algorithm for targeting lightweight consumer devices
which may have only integrated graphics hardware. In order to
maintain inference speed with these requirements, we configure
our model’s U-Net networks with much shallower encoder and
decoder blocks. Denoting encoder/decoder blocks with e/d and
following with the convolution depth of the block, FoVolNet’s
block configuration is e64-e64-e80-d96-d80-d64-d32, while
ours is e4-e8-e16-d32-d16-d8-d4. With testing, we found this
configuration greatly improved inference speed (especially on
systems with integrated graphics) while only slightly decreasing
inference quality.

B. Loss

We utilize a loss function solely on RGB for training.
Although Weiss et al. [58] find losses on color input to degrade
quality compared to losses on normal, hit mask, and ambient
occlusion map input for superresolution tasks on isosurface
images, our system performs well with only RGB loss. This
is likely due to our rendering application using simple Blinn-
Phong shading, while theirs uses more complex shading with
ambient occlusion, leading to more ambiguity in the shading
of colored pixels.

Our loss function consists of a combination of spatial
and temporal losses accumulated over all the frames in an
input image sequence. For spatial loss, we found best model
performance when using a loss function that combines a small
mean absolute error (L1) term with the multi-scale structural
similarity index (MS-SSIM) [63]. This loss is exponentially
down-weighted for earlier images in an input sequence to
incentivize the model to use recurrent connections. For temporal
loss, we use a simple L1 loss over previous frames to reduce
temporal flickering [19]. We experimented with adding a small
term based on optical flow [25], but this led to hole artifacts
appearing in predicted isosurfaces, especially in early frames
of an image sequence.

C. Training

We train our model using 16-frame camera orbit video
sequences of the Skull, TACC, Plasma, and Miranda datasets
from Table I rendered with our application. Initial position,
isovalue, and rotation speed are chosen randomly for each
sequence. Input is given as the frames of these sequences
where rendering was stopped with an 85% image completion
threshold, along with the reference frames at 100% completion.
To improve the model’s ability to learn what regions to infer, we
embed an active ray mask into the partial images by coloring
pixels whose rays are still active a solid red color, effectively
using the red channel of the input images to pass an active ray
mask. As we only use a single color for surfaces, we are able
to embed a mask marking active rays by coloring active pixels
red; however, this mask could also be passed as a separate
image when using more complex shading. Early results showed
that the active ray mask led to much higher inference quality
compared to models trained without the mask, due to better
ability to identify empty vs. incomplete regions.

For each dataset, 250 sequences were collected, for a total
of 32,000 input and reference images. Sequences were split
randomly into training and validation datasets with a 9:1
ratio. While these sequences were collected at a resolution
of 1280×720, we randomly tile these sequences at 256×256
during training to reduce training time and improve model
generalizability. We apply data augmentations of flipping
horizontally, flipping vertically, and rotating 90 degrees to
sequences at a probability of 50% each to effectively increase
the size of our training set.

All training was done in Pytorch [39] on an NVIDIA RTX
4070 laptop GPU. Due to memory constraints, we conduct
training with a mini-batch size of 1, but implement gradient
accumulation to mimic an effective batch size of 5. For the
final version of our model, we use an initial learning rate
of 5× 10−3 with a cosine annealing schedule to gradually
reduce the learning rate to a minimum of 1×10−8. To improve
training stability and optimization, we use the Ranger [61]
optimizer with a weight decay of 1×10−2 along with adaptive
gradient clipping [48] with a clip percentile of 10. Training
was done for 300 epochs and took 16 hours. Our model’s size
is 0.135MB, which is negligible compared to the datasets we
target.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Skull TACC Plasma Kingsnake
2563 2563 5123 1024×1024×785

Chameleon Beechnut Miranda
1024×1024×1080 1024×1024×1546 10243

JICF Q DNS R-M
1408×1080×1100 1920×1440×288 2048×2048×1920

TABLE I: The data sets used for evaluation range from small to massive and
come from both measured data sets and simulations, covering a wide range
of isosurface visualization use cases. The DNS combines adaptive precision
and resolution techniques [21] to enable visualization of the original 1TB
(10240×7680×1536) volume in the browser.

VI. EVALUATION

We evaluate the rendering performance and memory con-
sumption of our method on data sets ranging in size from
2563 (16.7M voxels) up to 2048×2048×1920 (8.05B voxels)
(Table I). Each data set is compressed offline with ZFP to
produce the compressed data used by the renderer. As ZFP
only supports single- and double-precision floating point values,
the compression step also converts any non single-precision
data sets to single-precision. Each data set is benchmarked
on 10 random isovalues sampled over values of interest in
the data. Each isovalue is rendered over a 10 position camera
orbit around the volume. We also demonstrate visualization of
complex isosurfaces on the 1TB DNS data set; the DNS is first
resampled from 10240× 7680× 1536 to 1920× 1440× 288
through a combination of adaptive precision and resolution
techniques [21], then compressed with ZFP.

The test data sets cover a range of isosurface visualization
scenarios, with some being especially challenging for surface
extraction techniques. The Skull, Kingsnake, Chameleon, and
Beechnut were produced through various scanning technologies.
The Skull and Chameleon consist of relatively smooth shell-like
isosurfaces, while the Kingsnake contains many fine features.
The Beechnut is a challenging case with many fine features and
noise, resulting in large isosurface mesh where large numbers
of triangles will be occluded. The TACC, Plasma, Miranda,
JICF Q, DNS, and Richtmyer-Meshkov (R-M) were produced
through various simulation codes. The Miranda, DNS, and
R-M pose similar challenges to surface extraction techniques
as the Beechnut; they consist of highly dense isosurfaces that
result in large meshes with large numbers of occluded triangles.
The JICF Q is similarly challenging, as a few isosurfaces cover

Skull TACC Plasma Kingsnake Chameleon Beechnut Miranda JICF Q DNS R-M
Data set

0

200

400

600

800

1000

A
vg

.
To

ta
lT

im
e

(m
s)

XPS 13 (i7-1165G7)
M1 Mac Mini
XPS 17 (RTX 4070 Laptop GPU)

(a) Average time to 85% image completion.

Skull TACC Plasma Kingsnake Chameleon Beechnut Miranda JICF Q DNS R-M
Data set

0

500

1000

1500

2000

2500

3000

A
vg

.
To

ta
lT

im
e

(m
s)

XPS 13 (i7-1165G7)
M1 Mac Mini
XPS 17 (RTX 4070 Laptop GPU)

(b) Average time to 100% completion.
Fig. 5: With progressive rendering, our method achieves interactive framerates
to reasonable isosurface approximates (a) across the data sets tested, even on the
XPS 13 and M1 Mac Mini. Moreover, rendering cost does not scale significantly
with data size, allowing large and complex to be rendered interactively on
lightweight systems. Our speculative approach completes rendering in few
passes, allowing for reasonable surface completion times (b).

a substantial portion of the domain, producing a large surface
that requires a large amount of data to be decompressed.

We report performance results of our algorithm on three
different laptops. Two are representative of lightweight end user
systems: a laptop with an i7-1165G7 CPU and integrated Intel
Iris Xe Graphics (XPS 13), and a Mac Mini with an M1 chip
(M1 Mac Mini). The final system is a more powerful XPS 17
laptop with an RTX 4070 Laptop GPU and an i9-13900H CPU.
The XPS 17 also includes integrated Intel Iris Xe Graphics.

We conduct a detailed evaluation of our method’s perfor-
mance and scalability and evaluate it against the state of the
art in GPU-based large-scale isosurface extraction [54]. In
Section VI-A, we discuss overall rendering performance of
our method. In Section VI-B, we evaluate the scalability of
our method with respect to data set size and image resolution
compared to the state of the art. In Section VI-C, we evaluate
our deep learning approach for reconstructing incomplete
isosurface images. Finally, Section VI-D evaluates the memory
consumption of our method against the state of the art.

A. Rendering Performance

The average time to 85% and 100% isosurface image
completion at 720p across the data sets and hardware platforms
tested are shown in Figure 5. Because of progressive rendering,
our method can achieve interactivity even when visualizing the
massive and complex isosurfaces of the Beechnut, Miranda,
JICF Q and DNS data sets on the XPS 13 and M1 Mac Mini.
When comparing performance across data sets, we observe
that our algorithm’s performance is nearly independent of data
set size. Instead, ours scales with the visible surface area and
complexity of the isosurface. We achieve similar performance
on data sets with similar isosurface structure, such as the Skull,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Plasma, Kingsnake, Chameleon and JICF Q, even though these
data sets range in size from 2563 to 1408×1080×1100. These
data sets have relatively smooth isosurfaces, where rays can
quickly skip empty space to reach the isosurface and find an
intersection. In contrast, data sets with noisier or more complex
isosurfaces such as the Beechnut, Miranda, DNS, and R-M,
see higher rendering times, as more data must be processed
for each ray to find an intersection. We also find that our
progressive approach is valuable to quickly provide a nearly
complete image of the data set, with times for 85% image
completion much faster than 100% image completion.

We additionally experiment with increasing our starting
speculation counts, and corresponding ray data buffers, by
factors of 2, 4, and 8. We find that speed-ups are achieved on
especially dense and noisy data sets, such as the Beechnut and
Miranda, or smaller datasets, such as the Skull and TACC. On
dense and noisy datasets, many rays remain active for many
passes, and larger ray data buffers ensure these rays can still
have high speculation counts and terminate faster. Speedups for
the XPS 13, M1 Mini, and XPS 17 were 1.10×, 1.20×, and
1.25× at starting speculation counts 2, 4, and 2 on the Beechnut.
On smaller datasets, larger ray data buffers allow increasing
work per pass to more fully utilize the GPU. Speedups for
the XPS 13, M1 Mini, and XPS 17 were 1.33×, 1.08×, and
2.05× at starting speculation counts 4, 4, and 8 on the Skull
dataset. In Figure 5, times reported are for the best performing
starting speculation count for each dataset and machine.

B. Scalability with Image and Data Size

The performance of our method is primarily driven by the
visible surface area and complexity of the isosurface being
rendered, and is less tied to the data set size. Another main
driver of rendering cost in our method is the number of pixels,
allowing rendering performance to be improved by reducing
the image size. This is in line with prior implicit isosurface and
volume raycasting techniques, which have image-order scaling.
Explicit isosurface extraction techniques, such as BCMC [54],
typically extract the complete triangle mesh for the isosurface,
including triangles that will be occluded in the final rendering.
These techniques scale with the size of the output isosurface,
and are more affected by data set size.

Figure 6 quantifies the benefits of these properties of
our algorithm against BCMC [54]. We conduct benchmarks
rendering at 1920× 1088 (1080p), 1280× 720 (720p), and
640× 368 (360p) on the Plasma, Chameleon, and Miranda
data sets, and compare against the isosurface extraction times
achieved by BCMC. To be compatible with our machine
learning architecture, image width and height must be divisible
by 24, so typical widths of 360 and 1080 are slightly modified
to 368 and 1088 for our benchmarks. Benchmarks for BCMC
were run over 100 random isovalues, while benchmarks for
our method were measured over a 10 position camera orbit for
10 random isovalues, starting positions, and rotation speeds.
Results for our method are shown for each resolution, while
BCMC is shown as a solid line as its compute costs are
resolution independent. Our method achieves an average 1.32×
reduction in 85% and fully complete times when scaling down

Plasma Chameleon Miranda
Data set

0

1000

2000

3000

4000

5000

6000

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(a) XPS 13, 85%.

Plasma Chameleon Miranda
Data set

0

1000

2000

3000

4000

5000

6000

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(b) XPS 13, 100%.

Plasma Chameleon Miranda
Data set

0

1000

2000

3000

4000

5000

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(c) M1 Mac Mini, 85%.

Plasma Chameleon Miranda
Data set

0

1000

2000

3000

4000

5000

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(d) M1 Mac Mini, 100%.

Plasma Chameleon Miranda
Data set

0

200

400

600

800

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(e) RTX 4070 Laptop, 85%.

Plasma Chameleon Miranda
Data set

0

200

400

600

800

A
vg

.
To

ta
lT

im
e

(m
s)

BCMC
640x368
1280x720
1920x1088

(f) RTX 4070 Laptop, 100%.
Fig. 6: The performance scaling of our approach and BCMC with image
resolution and data set size. BCMC’s compute cost is tied to the size of the
data set and the size of the output triangle mesh, making it difficult to scale
down to ensure interactivity. In contrast, our approach can scaled down easily
by reducing the image resolution, and is less effected by data size overall,
enabling interactive rendering of massive data sets on lightweight devices.

from 1080p to 720p, and an additional 1.56× reduction when
scaling down from 720p to 360p.

We compare our algorithm’s interactivity and total isosurface
computation times against BCMC by comparing 85% image
completion (Figures 6a, 6c and 6e) and total times (Figures 6b,
6d and 6f) against the surface extraction times achieved by
BCMC. Through our progressive rendering approach, we are
able to show an 85% complete image with better interactivity
than BCMC in all but two cases, the Plasma on the XPS 13
and RTX 4070, while requiring substantially less memory. In
addition, the time to fully complete the isosurface with our
algorithm was on par or faster for both the larger datasets
on the lightweight machines. The interactivity improvement
achieved by our method is especially pronounced on data sets
with large and complex isosurfaces such as the Miranda, where
BCMC struggles with the large number of active blocks and
the size of the surface mesh. At 1080p on the Miranda we
achieve 7.6×, 7.1× and 2.8× faster 85% completion times
and 3.6×, 3.6× and 1.5× faster total times on XPS 13, M1
Mac Mini and RTX 4070 respectively, compared to BCMC’s
surface extraction times. These speedups become even greater
if comparing BCMC against the 720p or 360p rendering results.

As before, all benchmarks in Figure 6 were performed
with starting speculation counts of 1, 2, 4, and 8, with the
best performing reported. Results only increased significantly

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

Device Backend 360p 720p 1080p

RTX 4070
TensorRT 4ms 16ms 37ms

Pytorch 5ms 17ms 41ms
ONNX Web 25ms 68ms 189ms

XPS 17 Integrated Graphics Pytorch 87ms 246ms 477ms
ONNX Web 93ms 266ms 718ms

XPS 13 Integrated Graphics ONNX Web 101ms 374ms 933ms

TABLE II: Average inference times for our model. ONNX web performs
much worse than native libraries on dedicated GPU, likely due to memory
management issues or falling back to CPU execution for operations missing
from the still in-development WebGPU backend. For integrated graphics
systems, this is much less impactful.

Data Set 85% Threshold 90% Threshold 95% Threshold
SSIM PSNR SSIM PSNR SSIM PSNR

Chameleon 0.92 22.64 0.96 25.87 0.99 32.48
Beechnut 0.89 21.00 0.93 21.62 0.98 27.75
JICF Q 0.93 22.42 0.97 26.71 0.99 32.71
DNS 0.92 26.28 0.96 29.39 0.99 36.63
R-M 0.93 27.47 0.97 30.28 0.99 38.06

TABLE III: Average SSIM and PSNR values for the 5 largest datasets after
10 orbit sequences of 16 frames each. Input was given as rendering stopped at
85%, 90% and 95% completion thresholds for the same isovalue and viewpoint.

with higher starting counts at 360p, likely due to better GPU
utilization by performing more work per pass when the number
of rays is small. Average speedups across datasets on the
XPS 13, M1 Mini, and XPS 17 were 1.27×, 1.21×, and 1.56×
at best performing starting speculation counts 2, 2 and 8.

C. Inference

Up to this point, we have discussed performance when
rendering 85% complete images, but have left out our deep
learning inference on intermediate results. As our algorithm’s
main target is the browser, we experimented with web-based
machine learning inference engines (namely TensorFlow.js [50]
and ONNX Runtime Web v1.18.0) to run our model directly
in the rendering application. These libraries both support GPU
utilization for inference with WebGL, and have experimental
WebGPU backends. Initial tests with our model showed that
both web libraries could not support WebGL-powered inference
for our case, either because of WebGL texture size limits
or missing operators used by our architecture, so we used
the experimental WebGPU backends for both. We found
significantly faster performance for our model using ONNX
Runtime Web (ORT Web) compared to TensorFlow.js, so we
choose this library’s web inference engine for our application.

To test the performance of our model, we measure ORT
Web inference timings on the dedicated RTX 4070 GPU
and the integrated graphics of the XPS 17, along with the
integrated graphics of the XPS 13. For comparison, we also
measure inference timings using two native GPU-accelerated
libraries: Pytorch, using the CUDA backend for dedicated
GPU and DirectML backend for integrated graphics, and
TensorRT, which only supports dedicated GPU. For ORT Web
and TensorRT, our models were converted to ONNX format
before being used for inference.

Inference benchmarks were performed by first running 10
warm-up inferences, then taking the average time of 500
inferences on example images from our training dataset. Results
are reported in Table II. Inference times using native libraries
(Pytorch and TensorRT) are shown to be significantly (around

4-5×) faster than ORT Web on the dedicated GPU. Because
this trend does not occur when using integrated graphics,
this is likely because of silently falling back to CPU-based
operators when the model tries to run operations not supported
by the WebGPU backend. While these results are disappointing,
ORT Web’s WebGPU backend is experimental and in active
development, and we expect performance to improve in the
future.

By adding the inference times to our dataset benchmarks
at 85% image completion and comparing with the 100%
completion times, we can see the effective speedup of using ML-
reconstructed intermediates rather than full rendering. Because
the inference times are dataset-independent, the speedup is
naturally best for the datasets that are slowest to render. For
the four datasets with the highest time to completion (Beechnut,
Miranda, DNS, and R-M), we achieve average speedups of
2.16×, 2.27×, and 1.75× at 360p, 720p, and 1080p when
using ORT Web on the RTX 4070 GPU. For the same system,
TensorRT gives speedups of 2.71×, 2.59×, and 2.63×, showing
how the performance should increase as the ORT Web WebGPU
backend improves. Even using the integrated graphics of the
XPS 13 with ORT Web, we see average speedups of 1.73× and
2.15× at 360p and 720p, although the performance gain does
not scale to 1080p due to the inference workload becoming
too heavy for the lightweight system.

While this shows the improved interactivity of using ML-
reconstructed intermediates, it is important to show the percep-
tual benefit of the model inference compared to the intermediate
images. To do this, we conduct a thorough study on the quality
of our model’s inference output using datasets that were not
seen during model training. For each of the 5 largest unseen
datasets (Chameleon, Beechnut, JICF Q, DNS, and R-M), we
run 10 camera orbit benchmarks, outputting 16 frames each.
For each frame, we output images of the rendering stopped
at 85%, 90%, 95%, and 100% completion thresholds. Images
at 100% completion are used as ground truths, while images
at other thresholds are grouped to be used as test sets for our
model. Inference is done for each camera orbit sequence at each
threshold, and recurrent state is cleared between sequences.

To evaluate the model output on these test sets, we compare
against the ground truth images using conventional metrics
of structural similarity (SSIM [57]) and peak signal to noise
ratio (PSNR). SSIM measures image distortion in a way that
correlates with the quality perception of the human visual
system, while PSNR provides a measure directly on the
magnitude of numerical differences between images [22]. Better
scores for output imply the model has given a better perceptual
approximate of the ground truth (higher SSIM) and has more
faithfully reconstructed the precise values of the ground truth
(higher PSNR).

Average PSNR and SSIM values of model output are
reported in Table III for each dataset and completion threshold.
As the image completion threshold is increased, the SSIM
and PSNR values for image reconstruction of all datasets
increases dramatically, with near ground truth results at 95%.
By providing users the ability to set the image completion
threshold, we provide another axis for users to trade some
output image quality for performance to improve interactivity.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

Input ML Infill Ground Truth Input ML Infill Ground Truth

Input ML Infill Ground Truth Input ML Infill Ground Truth

Input ML Infill Ground Truth Input ML Infill Ground Truth

A

PSNR: 14.17
SSIM: 0.78

PSNR: 27.28
SSIM: 0.95

PSNR: 25.26
SSIM: 0.95

PSNR: 13.10
SSIM: 0.79

PSNR: 13.46 SSIM: 0.76 PSNR: 26.73 SSIM: 0.96
PSNR: 13.76
SSIM: 0.81

PSNR: 21.57
SSIM: 0.91

PSNR: 13.50
SSIM: 0.80

PSNR: 23.71
SSIM: 0.96

PSNR: 13.64
SSIM: 0.75

PSNR: 27.30
SSIM: 0.93

C

E

B

D

F

Fig. 7: Example inference from our model on the six largest datasets with image quality metrics compared to ground truth. Input is given as the intermediate
result when our multipass algorithm reaches 85% image completion. Rays that are still active are marked by red pixels to form the active ray mask. Datasets
are A) JICF Q, B) DNS, C) Miranda, D) Beechnut, E) Chameleon, and F) R-M. Our model performs best when the structure of the dataset leads to uniform
samples for our model to infer from (F), and struggles when sampling is uneven due to sparse noisy regions (D).

Data set BCMC Avg. Mem Our Avg. Mem Reduction

Skull 329MB 109MB 3.02×
TACC 187MB 108MB 1.73×
Plasma 563MB 191MB 2.95×
Kingsnake 1.34GB 607MB 2.22×
Chameleon 2.09GB 691MB 3.02×
Beechnut — 1.06GB —
Miranda 4.20GB 737MB 5.70×
JICF Q — 1.00GB —
DNS — 875MB —
R-M — 4.19GB —

TABLE IV: The average total compute memory overhead required by our
algorithm vs. BCMC. We achieve an average 3.1× reduction in total memory
overhead. Entries marked by — crashed due to exceeding the 4GB buffer
binding limit in WebGPU.

Examples of 85% completion input, output, and ground
truths are given for the 6 largest datasets in Figure 7, along
with PSNR and SSIM values for the input and model output.
Results show that our method can increase PSNR and SSIM
dramatically from intermediate results of our progressive
rendering algorithm. However, some datasets and viewpoints
improve in quality much more than others. We find the reason
for this in most cases to be the sampling pattern of the
input images. Input that includes sparsely sampled regions
performs worse due to lack of rich pixel neighborhoods for
the model to draw information from. This can occur due to the
structure of datasets or the camera viewpoint causing uneven
ray termination for the input image; regions closer to the
camera or intersecting smooth areas of a dataset will terminate
faster than those far from the camera or glancing through many
blocks of a turbulent area. This can be seen in the quality of
inference on the R-M dataset (Figure 7, F) vs. the Beechnut
dataset (Figure 7, D). Compared to Beechnut, R-M has much
more even sampling of the entire volume in the input, leading
to much higher PSNR and SSIM values for the model output.

D. Memory Consumption

Finally, we compare the memory overhead of our technique
against BCMC [54]. BCMC provides a direct comparison

Data set BCMC Avg. Cache Mem Our Avg. Cache Mem Reduction

Skull 66.0MB 16.9MB 3.9×
TACC 55.0MB 16.0MB 3.4×
Plasma 107MB 44.7MB 2.4×
Kingsnake 545MB 145MB 3.8×
Chameleon 375MB 102MB 3.7×
Beechnut 1.99GB 243MB 8.2×
Miranda 1.40GB 167MB 8.4×
JICF Q — 170MB —
DNS 2.02GB 406MB 5×
R-M — 522MB —

TABLE V: The average cache size required by our algorithm vs BCMC. Our
progressive wavefront traversal achieves a significant reduction in the volume
working set size, providing a 4.8× reduction in cache size on average. Entries
marked by — crashed due to the cache exceeding the 4GB buffer binding
limit in WebGPU.

point for explicit isosurface extraction algorithms, as it also
works directly on compressed data sets and performs on the fly
decompression to reduce memory overhead. We report average
memory statistics over 100 random isovalue and 10 camera
position orbit benchmarks, rendering at 1280×720 (Tables IV
and V).

We achieve an average memory overhead reduction of 3.1×
compared to BCMC on the data sets BCMC is able to compute
on without running out of memory (Table IV). These memory
reductions are achieved through our algorithm’s use of implicit
ray-isosurface intersection, which eliminates the need for a large
vertex buffer, and our progressive wavefront traversal, which
significantly reduces the amount of data that must decompressed
to render the isosurface.

Furthermore, BCMC failed to compute the isosurface on the
Beechnut, JICF Q, DNS, and R-M, due to exceeding WebGPU’s
buffer size limit of 4GB. These large data sets have noisy or
turbulent isosurfaces, resulting in some isosurfaces containing
over 500M triangles. Even with BCMC’s quantized vertex
format, these large isosurfaces exceed 4GB, resulting in a
crash. These results were run on an RTX 3080, which has
12GB of GPU memory; however, on the XPS 13 or M1 Mac
Mini systems these data sets would fail due to running out of
GPU memory, even if the size limit was lifted or otherwise

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

Skull TACC Plasma Kingsnake Chameleon Beechnut Miranda JICF Q DNS R-M
Data set

0

20

40

60

80

100

A
vg

.
%

of
A

ct
iv

e
B

lo
ck

s

BCMC
Ours

(a) The average percentage of active blocks.

Skull TACC Plasma Kingsnake Chameleon Beechnut Miranda JICF Q DNS R-M
Data set

0

20

40

60

80

100

M
ax

%
of

A
ct

iv
e

B
lo

ck
s

BCMC
Ours

(b) The max percentage of active blocks.
Fig. 8: The (a) average and (b) max percentage of active blocks required by
BCMC and our algorithm. Our approach updates the cache each pass, storing
just the blocks needed by active rays. In contrast, BCMC decompresses all
blocks that may contain the isosurface.

worked around. Our algorithm is able to achieve interactive
rendering of these massive isosurfaces, even on the XPS 13
and M1 Mac Mini.

By progressively stepping rays through the volume and
decompressing and caching just the blocks required for each
pass, we achieve significant reductions in the amount of data
that must be decompressed. Table V compares the average
cache memory required by BCMC and our algorithm. The
Miranda and DNS results for BCMC were measured by
disabling the vertex extraction step. However, on the JICF Q
and R-M, BCMC’s active block cache memory alone exceeded
4GB, resulting in a crash. We achieve an average cache size
reduction of 4.8× compared to BCMC on the data sets it is
able to compute, with far greater reductions achieved on the
Beechnut (8.2×) and Miranda (8.4×). The Beechnut is a noisy
microCT scan and the Miranda is from a turbulent fluid mixing
simulation, resulting in large numbers of active but occluded
blocks being decompressed and processed by BCMC.

Our view-dependent algorithm achieves substantial reduc-
tions in the number of blocks that must be decompressed
(Figure 8). These reductions come from a number of factors:
our algorithm can replace unneeded blocks with active ones
each pass to minimize its working set; blocks that are occluded
or otherwise not visible are not decompressed; and the number
of visible blocks is driven by the image size and view position.
Compared to BCMC, we achieve a 6.7× reduction in the
average number of active blocks and a 5.7× reduction in
the maximum number of active blocks. The JICF Q and R-
M results for BCMC were measured by only recording the
number of active blocks for each isovalue and skipping all
other computation to avoid crashing.

VII. CONCLUSION AND LIMITATIONS

We have proposed a new view-dependent isosurface render-
ing algorithm designed specifically for interactive visualization

of massive isosurfaces on lightweight consumer platforms.
This is achieved through a progressive wavefront ray traversal
algorithm with per-pass block cache updates, where blocks of
the data are decompressed and cached on demand for each pass.
We accelerate isosurface rendering completion and increase
GPU utilization by introducing ray-block speculation into the
algorithm. Speculation enables us to fill open compute slots
with speculated ray-block intersections to better leverage the
GPU’s parallel compute power and complete rendering in
fewer passes and less time. By leveraging a neural network for
image reconstruction, we are able to improve interactivity by
providing high quality approximations of complete rendering
from intermediate passes, even for datasets unseen in model
training.

Our progressive, view-dependent isosurface rendering algo-
rithm is well suited to large scale isosurface visualization on
end-user devices. The memory costs of our algorithm are not
strongly affected by data set size and are much smaller than
the state of the art, enabling larger datasets to be rendered.
The progressive rendering provided by our algorithm makes
it well suited to provide low-latency interactive visualization.
The compute costs of our algorithm can be easily reduced by
simply reducing image resolution, effectively scaling rendering
down to maintain interactivity on lightweight systems and
mobile devices. Interactivity can be further improved by using
our deep learning approach to reconstruct approximates of a
complete rendering from early intermediate passes, enabling
the trade-off of rendering accuracy for performance by varying
the necessary completion threshold. Our algorithm runs entirely
in the browser on the GPU through WebGPU to expand access
to large scale data visualization, and is available on GitHub1,
along with a live demo2.

Our approach is not without its limitations. Although our
method scales up well to large data sets, it does not scale
down as well to small data sets. For example, BCMC achieves
faster surface extraction times on the Plasma and, in some
cases, on the Chameleon. Our approach still uses less memory
on these data sets; however, BCMC’s overhead on smaller
data sets is likely acceptable for the performance improvement.
Further optimization efforts would be worthwhile to improve
performance on smaller data sets, improve scalability with
image size, and reduce overhead to improve per-pass and
total rendering times overall. We also find call overhead in
JavaScript and WebGPU and note that better performance could
be achieved with a CUDA implementation where optimized
libraries such as Thrust and CUB are available. Bringing these
libraries to WebGPU would be a valuable effort.

There are also a number of interesting avenues left open
for future work. Although our speculation approach increases
utilization and achieves large speed-ups in total surface
rendering time, our use of a global speculation count for all rays
is restrictive. It may be possible to achieve higher utilization
by tracking a per-ray speculation count; however, the added
complexity may introduce additional overhead. It would also
be worthwhile to explore other acceleration structures that

1https://github.com/ldyken53/TVCG-progiso
2https://ldyken53.github.io/TVCG-progiso/

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

can be built over the macrocell grid instead of our two-level
grid to improve space skipping and provide level of detail
or multiresolution hierarchies to address current limitations
of our method with respect to undersampling the data. For
example, an implicit k-d tree [55] built over the blocks could
further accelerate empty space skipping, or multiresolution
and compression techniques from work on compressed volume
rendering could be integrated [2], [13]–[15], [35], [44], [56].
Leveraging multiresolution hierarchies within our method
would address limitations with respect to undersampling of the
high-resolution data, and enable rendering larger data sets. To
improve image quality, it would be worth exploring support for
secondary ray tracing effects in our pipeline to add shadows,
ambient occlusion, and global illumination with denoising. To
improve the reconstruction quality of our model, it could be
worthwhile to explore training with a custom loss function
built specifically for our unique pass in-fill task. Previous
work [37] has shown this strategy to be beneficial for other
image reconstruction applications.

Finally, as our algorithm’s rendering and memory costs are
primarily driven by the number of rays traced and the number
of passes, it would be worthwhile to combine our deep learning
method (which reduces the number of passes required) with
machine learning approaches for image up-scaling [58] and
foveated rendering [3] in order to also decrease the number of
rays. Such a combination would further lessen the number of
data samples required for our algorithm; reducing total surface
rendering times and memory footprint.

ACKNOWLEDGEMENTS

This work was funded in part by NSF RII Track-4 award
2132013, NSF PPoSS planning award 2217036, NSF PPoSS
large award 2316157 and, NSF collaborative research award
2221811.

REFERENCES

[1] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray
tracing. In EG 1987-Technical Papers, 1987.

[2] M. Balsa Rodríguez, E. Gobbetti, J. Iglesias Guitián, M. Makhinya,
F. Marton, R. Pajarola, and S. Suter. State-of-the-Art in Compressed
GPU-Based Direct Volume Rendering: State-of-the-Art in Compressed
GPU-Based DVR. Computer Graphics Forum, 2014.

[3] D. Bauer, Q. Wu, and K.-L. Ma. FoVolNet: Fast Volume Rendering using
Foveated Deep Neural Networks. IEEE Transactions on Visualization
and Computer Graphics, 2023.

[4] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-Art in GPU-Based
Large-Scale Volume Visualization. Computer Graphics Forum, 2015.

[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface
extraction from irregular volume data. In Proceedings of 1996 Symposium
on Volume Visualization. IEEE Press, 1996.

[6] M. Ciżnicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K. Napierała,
and J. Palczyński. Efficient Isosurface Extraction Using Marching Tetra-
hedra and Histogram Pyramids on Multiple GPUs. In R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Waśniewski, eds., Parallel Processing
and Applied Mathematics, 2012.

[7] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering. In
Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games. ACM, 2009.

[8] C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel. High-speed Marching
Cubes using HistoPyramids. Computer Graphics Forum, 2008.

[9] L. Dyken, P. Poudel, W. Usher, S. Petruzza, J. Y. Chen, and S. Kumar.
GraphWaGu: GPU Powered Large Scale Graph Layout Computation
and Rendering for the Web. In Eurographics Symposium on Parallel
Graphics and Visualization, 2022.

[10] T. Dykes, A. Hassan, C. Gheller, D. Croton, and M. Krokos. Interactive
3D Visualization for Theoretical Virtual Observatories. Monthly Notices
of the Royal Astronomical Society, 2018.

[11] K. Engel. CERA-TVR: A framework for interactive high-quality teravoxel
volume visualization on standard PCs. In 2011 IEEE Symposium on
Large Data Analysis and Visualization. IEEE, 2011.

[12] T. Fogal, A. Schiewe, and J. Krüger. An analysis of scalable GPU-based
ray-guided volume rendering. In 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization, 2013.

[13] N. Fout, H. Akiba, K.-L. Ma, A. E. Lefohn, and J. Kniss. High-
Quality Rendering of Compressed Volume Data Formats. EUROVIS
2005: Eurographics / IEEE VGTC Symposium on Visualization, 2005.

[14] N. Fout and K.-L. Ma. Transform Coding for Hardware-accelerated
Volume Rendering. IEEE Transactions on Visualization and Computer
Graphics, 2007.

[15] E. Gobbetti, J. A. Iglesias Guitián, and F. Marton. COVRA: A
compression-domain output-sensitive volume rendering architecture based
on a sparse representation of voxel blocks. Computer Graphics Forum,
2012.

[16] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister.
SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume
Rendering. IEEE Transactions on Visualization and Computer Graphics,
2018.

[17] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive Volume
Exploration of Petascale Microscopy Data Streams Using a Visualization-
Driven Virtual Memory Approach. IEEE Transactions on Visualization
and Computer Graphics, 2012.

[18] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-Time
Ray-Casting and Advanced Shading of Discrete Isosurfaces. Computer
Graphics Forum, 2005.

[19] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. Neural
temporal adaptive sampling and denoising. Computer Graphics Forum,
2020.

[20] L. Herzberger, M. Hadwiger, R. Krüger, P. Sorger, H. Pfister, E. Gröller,
and J. Beyer. Residency octree: A hybrid approach for scalable web-
based multi-volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 2024.

[21] D. Hoang, B. Summa, H. Bhatia, P. Lindstrom, P. Klacansky, W. Usher,
P.-T. Bremer, and V. Pascucci. Efficient and Flexible Hierarchical Data
Layouts for a Unified Encoding of Scalar Field Precision and Resolution.
IEEE Transactions on Visualization and Computer Graphics, 2021.

[22] A. Horé and D. Ziou. Image quality metrics: PSNR vs. SSIM. In 2010
20th International Conference on Pattern Recognition, 2010.

[23] H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, and S. Valette. A web
interface for 3D visualization and interactive segmentation of medical
images. In Proceedings of the 17th International Conference on 3D Web
Technology, 2012.

[24] S. Jourdain, U. Ayachit, and B. Geveci. ParaViewWeb: A Web Framework
for 3D Visualization and Data Processing. International Journal of
Computer Information Systems and Industrial Management Applications,
2011.

[25] A. S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall,
and G. Rufo. Deepfovea: neural reconstruction for foveated rendering
and video compression using learned statistics of natural videos. ACM
Trans. Graph., 2019.

[26] A. Kreskowski, G. Rendle, and B. Froehlich. Efficient Direct Isosurface
Rasterization of Scalar Volumes. Computer Graphics Forum, 2022.

[27] J. K. Li and K.-L. Ma. P4: Portable Parallel Processing Pipelines for
Interactive Information Visualization. IEEE Transactions on Visualization
and Computer Graphics, 2018.

[28] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics, 2014.

[29] B. Liu, G. J. Clapworthy, F. Dong, and E. Wu. Parallel Marching
Blocks: A Practical Isosurfacing Algorithm for Large Data on Many-
Core Architectures. Computer Graphics Forum, 2016.

[30] Y. Livnat and C. Hansen. View dependent isosurface extraction. In
Proceedings Visualization ’98. IEEE Computer Society Press, 1998.

[31] Y. Livnat, H.-W. Shen, and C. R. Johnson. A near optimal isosurface
extraction algorithm using the span space. IEEE Transactions on
Visualization and Computer Graphics, 1996.

[32] W. E. Lorenson and H. E. Cline. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. SIGGRAPH Computer Graphics,
1987.

[33] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek. Fast
and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray
Tracing. In 9th International Fall Workshop on Vision, Modeling, and
Visualization, 2004.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

[34] S. Martin, H.-W. Shen, and P. McCormick. Load-Balanced Isosurfacing
on Multi-GPU Clusters. In Eurographics Symposium on Parallel Graphics
and Visualization, 2010.

[35] J. Mensmann, T. Ropinski, and K. Hinrichs. A GPU-Supported Lossless
Compression Scheme for Rendering Time-Varying Volume Data. IEEE/
EG Symposium on Volume Graphics, 2010.

[36] M. M. Mobeen and L. Feng. High-Performance Volume Rendering
on the Ubiquitous WebGL Platform. In 2012 IEEE 14th International
Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and
Systems, 2012.

[37] A. Mustafa, A. Mikhailiuk, D.-A. Iliescu, V. Babbar, and R. K. Mantiuk.
Training a task-specific image reconstruction loss. 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2021.

[38] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
Ray Tracing for Isosurface Rendering. In Proceedings Visualization ’98,
1998.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: an imperative style, high-
performance deep learning library. Curran Associates Inc., Red Hook,
NY, USA, 2019.

[40] F. Perez and B. E. Granger. IPython: A System for Interactive Scientific
Computing. Computing in Science & Engineering, 2007.

[41] M. Raji, A. Hota, T. Hobson, and J. Huang. Scientific Visualization
as a Microservice. IEEE Transactions on Visualization and Computer
Graphics, 2018.

[42] M. Raji, A. Hota, and J. Huang. Scalable Web-Embedded Volume
Rendering. In IEEE 7th Symposium on Large Data Analysis and
Visualization. IEEE, 2017.

[43] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Cham, 2015.

[44] J. Schneider and R. Westermann. Compression domain volume rendering.
In IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control. IEEE, Seattle, WA, USA, 2003.

[45] W. Schroeder, R. Maynard, and B. Geveci. Flying edges: A high-
performance scalable isocontouring algorithm. In IEEE 5th Symposium
on Large Data Analysis and Visualization. IEEE, 2015.

[46] M. Schütz. Potree: Rendering Large Point Clouds in Web Browsers.
PhD thesis, Vienna Univ. of Technol., Vienna, Austria, 2016.

[47] M. Schütz, B. Kerbl, and M. Wimmer. Software Rasterization of 2
Billion Points in Real Time. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 2022.

[48] P. Seetharaman, G. Wichern, B. Pardo, and J. Le Roux. AutoClip:
Adaptive gradient clipping for source separation networks. In 2020 IEEE
30th International Workshop on Machine Learning for Signal Processing
(MLSP). IEEE, 2020.

[49] T. Sherif, N. Kassis, M.-Ã. Rousseau, R. Adalat, and A. C. Evans.
BrainBrowser: Distributed, web-based neurological data visualization.
Frontiers in Neuroinformatics, 2015.

[50] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu, K. Zhang,
S. Cai, E. Nielsen, D. Soergel, S. M. Bileschi, M. Terry, C. Nicholson,
S. N. Gupta, S. Sirajuddin, D. Sculley, R. Monga, G. S. Corrado, F. B.
Viégas, and M. Wattenberg. Tensorflow.js: Machine learning for the web
and beyond. ArXiv, 2019.

[51] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A Simple and Flexible
Volume Rendering Framework for Graphics-Hardware-based Raycasting.
In Volume Graphics. IEEE, 2005.

[52] S. K. Suter, J. A. Iglesias Guitian, F. Marton, M. Agus, A. Elsener, C. P. E.
Zollikofer, M. Gopi, E. Gobbetti, and R. Pajarola. Interactive Multiscale
Tensor Reconstruction for Multiresolution Volume Visualization. IEEE
Transactions on Visualization and Computer Graphics, 2011.

[53] M. M. Thomas, K. Vaidyanathan, G. Liktor, and A. G. Forbes. A
reduced-precision network for image reconstruction. ACM Trans. Graph.,
2020.

[54] W. Usher and V. Pascucci. Interactive Visualization of Terascale Data in
the Browser: Fact or Fiction? In IEEE 10th Symposium on Large Data
Analysis and Visualization, 2020.

[55] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster
isosurface ray tracing using implicit KD-trees. IEEE Transactions on
Visualization and Computer Graphics, 2005.

[56] C. Wang, Hongfeng Yu, and Kwan-Liu Ma. Application-Driven
Compression for Visualizing Large-Scale Time-Varying Data. IEEE
Computer Graphics and Applications, 2010.

[57] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 2004.

[58] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric
Isosurface Rendering with Deep Learning-Based Super-Resolution. IEEE
Transactions on Visualization and Computer Graphics, 2021.

[59] S. Weiss, P. Hermüller, and R. Westermann. Fast neural representations
for direct volume rendering. Computer Graphics Forum, 2022.

[60] S. Weiss, M. IşIk, J. Thies, and R. Westermann. Learning adaptive
sampling and reconstruction for volume visualization. IEEE Transactions
on Visualization and Computer Graphics, 2022.

[61] L. Wright. Ranger - a synergistic optimizer. https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer, 2019.

[62] Q. Wu, D. Bauer, M. J. Doyle, and K.-L. Ma. Interactive volume visual-
ization via multi-resolution hash encoding based neural representation.
IEEE Transactions on Visualization and Computer Graphics, 2023.

[63] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image
restoration with neural networks. IEEE Transactions on Computational
Imaging, PP, 2016.

Landon Dyken is a student and graduate research
assistant at the University of Illinois Chicago. He
is currently pursuing a PhD degree in Computer
Science under Sidharth Kumar as a member of
the Electronic Visualization Lab (EVL) and High
Performance Computing (HPC) groups. His focus
is on the subjects of data visualization and parallel
computing, specifically building web-based graphics
tools and GPU-accelerated systems. Before beginning
his PhD, he received a dual B.S. in Mathematics and
Computer Science from the University of Alabama

at Birmingham in 2021, and an M.S. in Computer Science from the University
of Alabama at Birmingham in 2023.

Will Usher is a Scientific Visualization Engineer
at Luminary Cloud, where he works on a mix of
challenging problems in computer graphics, spatial
data processing, parallel computing, and rendering
large data sets in the browser. He completed his Ph.D.
in Computer Science at the Scientific Computing
and Imaging Institute at the University of Utah,
advised by Valerio Pascucci. His research interests
cover a range of areas in scientific visualization and
computer graphics including: distributed rendering,
virtual reality, in situ visualization and ray tracing.

Sidharth Kumar is an assistant professor in the
Department of computer science at the University
of Illinois at Chicago. He received his Ph.D. in
2016 from the University of Utah, where he also
conducted his postdoctoral research. His research
interests include high-performance computing, large-
scale data management, and big data analytics and
visualization. His research in parallel I/O framework
has been deployed at the highest scale (768K cores)
and also put into production runs (at 260K cores)
at some of the fastest supercomputers in the world

(Theta, Mira, Polaris, Shaheen, Edison, and Hopper). He has received best
paper awards at premium HPC and vis conferences such as ISC, HiPC and
LDAV. His current research is supported by four NSF grants.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3420225

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

