
Accelerating Web-Based Graph Drawing with Bottom-Up GPU Quadtree
Construction

Landon Dyken*

University of Illinois Chicago
Will Usher

Luminary Cloud
Steve Petruzza

Utah State University
Stavros Sintos

University of Illinois Chicago

Sidharth Kumar
University of Illinois Chicago

Figure 1: Example graph drawn for the Pkustk13 dataset from the SuiteSparse matrix collection [13], consisting of 94,893 vertices
and 6,616,827 edges. This layout was computed in 1000 iterations of our force-directed algorithm, taking only 5.48 seconds on
an Nvidia RTX 4070 Laptop GPU. Vertices are colored by their Hilbert code spatial ordering, which we use to efficiently build a
quadtree on GPU for force approximation.

ABSTRACT

Graph drawing, or graph layout creation, is a computationally dif-
ficult challenge in visualization that involves placing the vertices
of a graph into a layout that provides insight into its structure. In
order to visualize large-scale graphs, effective layouts are neces-
sary for understanding. Previous work has shown the potential for
graph drawing directly in the web browser by using WebGPU, a
new API that brings the full capabilities of modern GPUs to the
web. Compared to the existing state-of-the-art for web-based graph
visualization, which rely on CPU-based graph drawing algorithms,
WebGPU-accelerated work improves performance and scalability.
However, we find that existing WebGPU solutions utilize sub-
optimal quadtree data structures for graph drawing. In this work,
we implement a modified quadtree data structure that uses a Hilbert
spatial ordering for a fully parallelizable bottom-up construction al-
gorithm in WebGPU. We utilize this data structure, along with op-
timizations to the quadtree traversal, to propose a massively more
performant graph drawing algorithm. We evaluate the performance
of our work against the existing state-of-the-art and demonstrate
up to 69.5× speed-ups for layout creation of relevant graphs while
enabling graph drawing for datasets of much larger size.

Keywords: Graph layout creation, web-based, quadtree, GPU.

*e-mail: ldyke@uic.edu

Index Terms: Human-centered computing [Visualization]: Visu-
alization techniques—Graph drawings ;

1 INTRODUCTION

Efficient visualization of large-scale graphs is critical for numerous
fields such as social networks, health science, web search, and road
maps [2, 16, 15]. For this task, one of the key problems is graph
drawing, which projects a graph, G = (V,E), where V is the set of
vertices and E is the set of edges, onto a 2D plane such that each
vertex v ∈V is assigned a position Pv. The goal of graph drawing is
to compute these positions in a way that visually captures the struc-
ture of the underlying graph. This is a computationally demanding
challenge, especially as we see the scale of graph applications con-
tinuing to increase steadily [20].

At the same time, as software is increasingly accessed through
the web rather than through desktop applications, the browser has
emerged as the go-to for deploying visualization tools. This fur-
ther complicates the challenge of graph drawing, as existing so-
lutions for the web offer poor performance for large-scale graphs
due to their reliance on CPU-based algorithms. To address this,
GraphWaGu [5] utilized WebGPU [22] to create a framework for
GPU-accelerated graph layout creation and rendering in the web
that outperforms existing web-based graph libraries.

However, while the rest of their graph drawing algorithm is par-
allelized fully on GPU, GraphWaGu relies on a single-threaded
algorithm for quadtree [7] construction, where all vertices of the
graph are inserted one after another to build the quadtree in a top-
down manner. This greatly constrains the scalability and perfor-

mance of their system. In our work, we take inspiration from re-
cent work in unstructured volume rendering [18] to propose a mod-
ified quadtree data structure that utilizes a Hilbert spatial ordering
for a fully parallelizable bottom-up construction algorithm in We-
bGPU. We uniquely apply this data structure for Barnes-Hut ap-
proximation [1] in our force-directed graph drawing algorithm. Ad-
ditionally, we improve upon GraphWaGu’s algorithm by optimizing
quadtree traversal for repulsive force computation. Our evaluation
shows that our web-based system outperforms GraphWaGu by mas-
sive margins on relevant graph sizes while enabling graphs of even
larger scale. In summary, our paper makes the following contribu-
tions:

• Developed a parallel WebGPU-based bottom-up quadtree con-
struction algorithm using Hilbert spatial ordering for use in
Barnes-Hut force-directed graph drawing, resulting in huge per-
formance improvement over the state-of-the-art in web-based
graph visualization

• Utilized this quadtree with an optimized traversal approach for
graph drawing, resulting in interactive computation for much
larger graphs than previously supported (almost 100,000 nodes
and 6 million edges)

2 BACKGROUND AND RELATED WORK

The most widely used methods for creating insightful graph lay-
outs are force-directed algorithms [6, 12, 8], where forces are mod-
eled between vertices in the input graph, pushing them to positions
that fit the graph’s structure. These algorithms compute repulsive
forces between all pairs of vertices that repel them from each other,
along with attractive forces between vertices connected by an edge,
pulling them together. These forces are modeled iteratively, and
the vertices of the graph are moved every iteration until a suitable
layout is attained.

In each iteration, while the cost to compute attractive forces is
O(|E|), the cost for directly computing repulsive forces is O(|V |2),
making it infeasible for large graphs. There have been many works
that address this challenge [8, 11, 1, 14, 9] which reduce the repul-
sive force computation to O(|V | log |V |) or O(|V |) through meth-
ods such as approximation or random sampling. Among these,
the Barnes-Hut (BH) approximation is one of the most widespread
techniques. This method constructs a quadtree over the input
graph’s vertices, augmented with the center of mass and total
mass contained in every quadtree node. When computing repul-
sive forces for a vertex, the quadtree is traversed recursively from
the root. If the distance between the vertex and the node’s center
of mass is above a certain threshold, the node is used to approxi-
mate forces for all vertices contained within it; otherwise, all of the
node’s children are added to the stack for further traversal. This
leads to an expected O(|V | log |V |) running time, as each vertex
greatly reduces the number of vertices it needs to compute repul-
sive forces against.

In this work, we build a system for web-based graph visualiza-
tion that extends GraphWaGu [5], which uses a graph drawing algo-
rithm with BH approximation where attractive and repulsive forces
are computed on GPU. While GraphWaGu [5] presents the first
force-directed graph algorithm in WebGPU, parallel implementa-
tions of both force-directed algorithms and quadtree construction
have been explored in earlier research. One of the most important
works is Warren and Salman [21], who propose a method for dis-
tributed quadtree construction, which was also adapted for force-
directed graph drawing by Rahman et al. [19] in a native OpenMP
setting. This method begins by assigning a code to each item being
inserted into the quadtree by using its spatial Morton order (also
known as Z-order). By sorting based on these codes, the items are
put in order of spatial proximity, where spatially close items are
close in the sorted list. After the sort, the items are divided into

Algorithm 1 Complete pseudocode for our algorithm described in
Section 3.

1: Input: G(V,E),coolingFactor,b,θ
2: while coolingFactor ≥ ε do
3: for v← 0 to |V | do in parallel
4: H[v]← HilbertCode(V [v])
5: end for
6: sortByHilbertCodes(V)
7: for v← 0 to |V | do in parallel
8: T [v]← TreeNode(v)
9: end for

10: s← 0
11: for i← 0 to logb |V | do
12: e← s+ |V |/bi

13: for j← 0 to |V |
bi+1 do in parallel

14: T [e+ j]←Merge(T [s+ j ∗b], ...,T [s+ j ∗b+b−1])
15: end for
16: s← e
17: end for
18: computeAttractiveForces()
19: for v← 0 to |V | do in parallel
20: node← root,counter← 0,stack[64]
21: while node ̸= null do
22: if θ > 2.0∗node.size

distance(V [v],node.CoM)
then

23: F [v]← F [v]+node.mass∗ fr(V [v],node.CoM)
24: else
25: for child of node do
26: stack[counter] = child
27: counter← counter+1
28: end for
29: end if
30: counter← counter−1
31: node = stack[counter]
32: end while
33: end for
34: for i← 0 to |V | do in parallel
35: V [i].position←V [i].position+F [i]∗ coolingFactor
36: F [i]← 0
37: end for
38: coolingFactor← coolingFactor ∗ initialCoolingFactor
39: end while

sets, and each processor creates its own quadtree over its set of
items, giving a distributed quadtree. This work was extended by
Grama et al. [10] for better load balancing through improved do-
main decomposition and assignment of subdomains. Grama et al.
also replaced the use of Morton codes with Hilbert codes. While
these works construct a quadtree in parallel, they are built for using
multiple distributed CPU cores, not for GPU acceleration.

A popular GPU-accelerated graph drawing algorithm is the
ForceAtlas2 implementation by Brinkmann et al. [3], who utilize
a CUDA implementation of BH approximation [4] with an irregu-
lar tree-based structure and complex traversal. Later work by Zhang
and Gruenwald [23], which does not touch on BH approximation or
graph drawing, shows how to improve the performance of quadtree
construction on GPU by using a bottom-up approach. Here, they
sort all items by their Morton code again (using a GPU radix sort),
then create the full quadtree directly in one GPU buffer. They do
this by successively applying a CUDA reduce by key primitive to
build up the tree from the leaves to the root and show that their
performance is faster than other parallel implementations.

In order to take advantage of GPU acceleration for quadtree con-
struction, we take inspiration from Zhang and Gruenwald [23] and
create a bottom-up algorithm. We differ from their implementation

0 1

23

4 7

5 6

14 15

1213

8 11

9 10

0000 0001

0011 0011

0100 0111

0101 0110

1110 1111

1101 1100

1000 1011

1001 1010

0000

0000

0001

0011

1001

1011

1101

1110

Iteration 1 Iteration 2 Iteration 3

00

00

00

10

11

null

null

A B C
Figure 2: Illustration of our quadtree construction algorithm with a branching factor of 2 on a small example where the minimum spatial subdivision
is 1/22. A) shows the Hilbert spatial curve on this space, ordering the cells by spatial proximity beginning with the bottom left and ending with the
bottom right. B) shows an input graph defined by 8 vertices in this space. Hilbert codes are computed for each vertex using the ordering from
earlier, converting the decimal numbers into binary codes, and assigning them to the vertices contained in each cell. Vertices are colored by their
Hilbert codes. C) shows the process of bottom-up construction of the tree. The vertices are first sorted based on their Hilbert codes, leading
to the ordering shown. Then, the next levels of the tree are iteratively computed by finding the shared prefix in the Hilbert codes of neighboring
nodes in the previous level. These shared prefixes correspond to spatial partitions, for example with 00 and 10 representing the bottom left and
top right quadrants of the space.

in several key aspects: WebGPU’s lack of a reduce by key primitive
necessitates us to implement our own method for merging nodes to
create the levels of the tree; our quadtree nodes store additional data
(center of mass and total mass) for BH approximation; we optimize
memory by eliminating empty child nodes; and we parameterize
node branching factors rather than fixing them at four. Addition-
ally, insights from unstructured volume rendering [18] guide our
choice of Hilbert over Morton ordering to improve spatial locality
during tree construction.

3 IMPLEMENTATION

We propose a web-based algorithm for force-directed graph draw-
ing that can fully utilize the capabilities of modern GPUs. To do
this, we begin from the starting point of GraphWaGu, creating an
iterative algorithm that models attractive and repulsive forces be-
tween vertices to gradually move them towards the lowest energy
arrangement. For convergence, a cooling factor is used that slowly
reduces the forces being applied every iteration. Because we found
their method for attractive force computation to be effective, our al-
gorithm focuses on improving the computation of repulsive forces
by overhauling their quadtree construction and traversal methods.

The complete pseudocode for our algorithm is given in Algo-
rithm 1. The input to our algorithm consists of the graph G(V,E),
the cooling factor (usually set between 0.95 and 0.99), the branch-
ing factor b for our modified quadtree, and the approximation factor
θ . Each iteration of our algorithm begins by constructing our mod-
ified quadtree in parallel, which occurs in Lines 3-17 in the pseu-
docode and is described in Section 3.1. We then compute attractive
forces by using the method of GraphWaGu, shown in Line 18. Af-
ter this, we use our quadtree to compute repulsive forces in parallel,
which occurs in Lines 19-33 in the pseudocode and is described in
Section 3.2. Finally, we apply the forces to the vertices of the input
graph in parallel and update the cooling factor in Lines 34-38 of the
pseudocode.

3.1 Quadtree Construction

The first step of constructing our modified quadtree is to compute
Hilbert codes for each vertex of the input graph in parallel on GPU

(Lines 3-5 in Algorithm 1). This is done for each vertex by convert-
ing its x and y coordinates to 16 bit unsigned integers, then using
bit shift and rotation operations to encode both into one 32 bit un-
signed integer code according to the Hilbert spatial ordering. After
this, we use a GPU radix sort implemented in WebGPU to sort the
vertices of the graph according to these Hilbert codes (Line 6 in
Algorithm 1). This step is crucial, as it places vertices together in
the buffer based on their spatial proximity. Next, we create the leaf
nodes of the tree in parallel (Lines 7-9 in Algorithm 1), writing out
each vertex’s minimum containing node with a mass of 1, center of
mass (CoM) at the vertex’s position, and size of 1/216. This size
comes from the fact that we are using 16 bits to encode the x and y
coordinates of each vertex in a Hilbert code, meaning our minimum
spatial subdivision is of size 1/216. Because these nodes were built
in order from the sorted vertices, they will also be written in the tree
with preserved spatial proximity.

Once the leaf nodes of the tree are created, we can apply a
bottom-up approach to build the higher levels in parallel through
successively merging adjacent nodes. While a quadtree typically
subdivides nodes into 4 at every level, we allow this branching fac-
tor b to be given as a parameter to our algorithm, although exper-
imentally we found best performance using the typical value of 4.
This bottom-up merging process can be seen in Lines 10-17 in Al-
gorithm 1. The merging process iterates logb |V | times, each iter-
ation i successively creating one of the logb |V | levels of the tree
until the root is reached. Each iteration dispatches |V |/bi+1 GPU
threads, where each thread merges b adjacent nodes at the current
level to create a new node at the level one higher. s and e are used
as the starting and ending indices to find the nodes that are being
merged at the current iteration.

For our function to merge the b nodes in each thread (defined
as ”Merge” in the pseudocode), we utilize the fact that each node
has a corresponding Hilbert code. We compute the containing node
for the b nodes being merged by comparing their Hilbert codes and
finding the shared code prefix between all nodes. Because any pre-
fix of a Hilbert code corresponds to a higher level subdivision that
contains the original Hilbert code, this prefix effectively gives us
the minimum-size containing node for the nodes being merged. The

Unsorted Morton Codes Hilbert Codes

Figure 3: Illustration of quadtrees created through bottom-up construction using either unsorted vertices, vertices sorted by their Morton codes,
or vertices sorted by their Hilbert codes. Vertices are colored by their containing node in the quadtree using a rainbow colormap, giving a linear
relationship between color similarity and distance between nodes in the quadtree. For quadtree traversal and approximation, it is important to
have nodes contain only vertices that are spatially close to each other. The unsorted quadtree performs terribly, since vertices with the same
color are distant from each other, resulting in inefficient spatial partitioning as the containing nodes become huge. The Morton quadtree is
much better, but the z-order jumps also result in sub-optimal quadtree creation, as can be seen with the green vertices that are spatially distant
from each other. Only the Hilbert quadtree enforces spatial proximity for quadtree nodes, due to the optimal clustering properties of Hilbert
space-filling curves [17].

size of this new node is computed with 1/2p/2, where p is the num-
ber of bits in the nodes’ shared prefix. The mass of the new node
is computed as the sum of the masses of the merged nodes, and
the CoM is computed as the average of the merged nodes’ CoMs,
weighting each by the nodes’ mass. We illustrate a simple example
of our quadtree construction algorithm in Figure 2.

This algorithm allows us to build our quadtree from the bottom
up, recursively merging groups of neighboring vertices to create the
spatial partitions of our graph for BH approximation. Because the
vertices were initially sorted via a spatial ordering, the partitions
created do not become too large and have minimal overlap. This is
important for computation of repulsive forces, as inefficient parti-
tioning will slow quadtree traversal and reduce the likelihood of the
BH approximation condition being met, resulting in worse perfor-
mance. We present a visual comparison between spatial partitions
produced by unsorted vertices, Morton codes, and Hilbert codes in
Figure 3.

3.2 Repulsive Force Computation

In GraphWaGu, repulsive force computation utilized a large pre-
allocated storage buffer as a pseudo-stack to complete a breadth-
first quadtree traversal for each vertex in parallel. While the rest of
our algorithm for computing repulsive forces is similar, we remove
the need to use a storage buffer for the stack by simply replacing the
breadth-first quadtree traversal with a depth-first quadtree traversal.
Removing the large stack buffer improves overall performance and
enables our algorithm to compute layouts for larger graphs than
GraphWaGu, as this buffer was the memory bottleneck for many
input graphs.

Our repulsive force computation is shown in Lines 19-33 of Al-
gorithm 1. This process dispatches a GPU thread for each vertex
to compute its own repulsive forces in parallel. Beginning at the
root, the thread traverses our quadtree data structure using a stack
array of length 64. At each node, there is a check against the BH
approximation condition (Line 22 in Algorithm 1), where forces are
approximated for all vertices contained in that node if the condition
is met. Otherwise, all of the node’s children are added to the stack
for traversal. Importantly, the traversal pops the last added element
off the stack each iteration, rather than the first, resulting in a depth-

Dataset Nodes Edges
sf ba6000 6,000 5,999
fe 4elt2 11,143 65,636

pkustk02 10,800 399,600
pkustk01 22,044 979,380

finance256 37,376 298,496
finance512 74,752 261,120
pkustk13 94,893 6,616,827

comYoutube 1,134,890 5,975,248

Table 1: Graphs used to evaluate graph drawing. The datasets vary
in size and density to illustrate the scalability of our implementation.
All of these graphs are undirected and two-dimensional.

first traversal and allowing for a much smaller array to maintain the
current traversal’s stack.

4 EVALUATION

In this section, we evaluate the performance improvement achieved
by our force-directed layout algorithm compared to GraphWaGu.
We outline the datasets used for this evaluation in Section 4.1, de-
scribe the experimental setup in Section 4.2, and present results in
Section 4.3.

4.1 Datasets

To evaluate the performance of our algorithm, we use the same five
real undirected graphs from the SuiteSparse Matrix Collection as
in GraphWaGu [13, 5]. These datasets, shown in Table 1, were
previously used to demonstrate that GraphWaGu’s graph drawing
outperforms the state-of-the-art CPU-based JavaScript visualiza-
tion library D3.js. We also include three additional larger datasets
from the same collection to show that our algorithm can continue
to scale for even larger graphs. Notably, we include the comY-
outube dataset, which consists of over 1.1 million nodes, dwarfing
the largest dataset used by GraphWaGu by over 30x the number of
nodes.

sf_ba6000 fe_4elt2 pkustk02 pkustk01 finance256 finance512 pkustk13 comYoutube
1

5

10

20

40

80

160

Ti
m

e
(m

s)

CRASH CRASH CRASH

15.7×

24.0× 25.2×

40.5×

69.5×

RTX 4070 Laptop GPU

GraphWaGu
Ours

Figure 4: Average iteration times in milliseconds (logarithmic scale)
for GraphWaGu and our algorithm on the RTX 4070 Laptop GPU,
demonstrating speedups ranging from 15.7× to 69.5×. GraphWaGu
was unable to compute layouts for the larger finance512, pkustk13,
and comYoutube datasets.

4.2 Experimental Setup

The experimental environment for this project was a laptop system
featuring an Intel core i9-13900H processor with 20 cores and a
base clock speed of 2.60 GHz, paired with 32 GB of RAM and inte-
grated Intel Iris Xe Graphics. The system also includes a dedicated
NVIDIA GeForce RTX 4070 laptop GPU with 8 GB of dedicated
VRAM. DirectX 12 was used as the graphics backend with the We-
bGPU framework. The web application was developed using React
JS, and the benchmarks were executed using Node.js v22.12.

For our experiment, we measured the time taken to compute a
graph layout for our chosen datasets with both GraphWaGu and our
algorithm. In order to showcase the performance of our method on
both dedicated and integrated GPUs, we computed our benchmarks
on both the integrated Intel Iris Xe Graphics and NVIDIA GeForce
RTX 4070 Laptop GPU of the experimental system. To ensure con-
sistency and reliability, we ran both algorithms for 1000 iterations
for each dataset and report the average time for one iteration. Be-
cause both algorithms have the same BH approximation condition,
we used an approximation factor of 2 for all benchmarks to ensure
the comparison is fair. All times are reported in milliseconds (ms).

4.3 Results

Figure 4 and Figure 5 show the average iteration time comparison
between GraphWaGu and our algorithm on the dedicated and inte-
grated GPUs respectively. Across all data sizes and both systems,
our algorithm consistently outperforms GraphWaGu by a signifi-
cant margin. The results show that our algorithm achieves speedups
ranging from 15.7× (sf ba6000) to 69.5× (finance256) on the ded-
icated GPU, and from 15.0× (sf ba6000) to 35.2× (finance256)
on the integrated GPU, with the most significant improvements ob-
served for larger datasets. Speedups for the integrated GPU are
slightly less than for the dedicated GPU because the performance
gain from parallelizing quadtree construction will necessarily be
larger with a more powerful GPU.

In addition, the lower memory footprint achieved with our depth-
first quadtree traversal for repulsive force computation enables lay-
out creation for larger graphs while also improving total iteration
performance. This can be seen in our results for the three larger
example graphs that lead to memory errors in GraphWaGu (fi-
nance512, pkustk13, and comYoutube). We find on both dedicated
and integrated GPUs that the iteration times for all graphs except
comYoutube remain below the iteration time for even the smallest
graph with GraphWaGu. Impressively, we show our method is able
to compute one iteration of forces for pkustk13 in only 5.48 ms
(182fps) on the dedicated GPU, despite it having almost 100,000
nodes and 6.6 million edges. In addition, although performance

sf_ba6000 fe_4elt2 pkustk02 pkustk01 finance256 finance512 pkustk13 comYoutube
1

5

10

20

40

80

160

320

640

1280

Ti
m

e
(m

s)

CRASH CRASH CRASH

15.0×
17.6× 21.7×

32.0×
35.2×

Integrated Intel Iris Xe Graphics

GraphWaGu
Ours

Figure 5: Average iteration times in milliseconds (logarithmic scale)
for GraphWaGu and our algorithm on the integrated Intel Iris Xe
Graphics, demonstrating speedups ranging from 15.0× to 35.2×.
GraphWaGu was unable to compute layouts for the larger fi-
nance512, pkustk13, and comYoutube datasets.

finance256
(GraphWaGu)

finance256
(Ours)

comYoutube
(Ours)

25

50

75

100

125

150

175

It
er

at
io

n
Ti

m
e

123ms

8ms

2ms

3ms (each)
10ms

14ms

160ms

Iteration Time By Algorithm Step

Create Tree
Attractive Forces
Repulsive Forces

Figure 6: Average time taken by the different steps of GraphWaGu
and our algorithm for selected datasets on the RTX 4070 Laptop
GPU. Device synchronization to time each algorithm step adds some
constant time (around 2-3ms). Results on the finance256 dataset
show that our method greatly reduces the time for both tree creation
and repulsive force computation compared to GraphWaGu. In addi-
tion, we show that on the much larger comYoutube graph, our tree
creation step is still incredibly efficient, and the majority of the time
comes from computing repulsive forces.

starts to suffer, we show that it is possible to run graph drawing
using our algorithm even for a massive graph such as comYoutube
(1.1 million nodes) directly in the browser. We note that, although
we’ve restricted these benchmarks to using an approximation fac-
tor of 2, a higher approximation factor could be used to greatly
improve the iteration time for this massive graph, enabling inter-
activity at the cost of some accuracy in the resulting layout. We
leave analysis of this tradeoff to future work. Overall, these results
confirm that our algorithm significantly reduces computation time
for layout creation and enables better scalability, demonstrating the
effectiveness of leveraging parallelism in WebGPU for scalable and
efficient graph visualization.

To analyze the specific performance of the steps of our algo-
rithm compared to GraphWaGu, we also include a breakdown for
some of the iteration times using the RTX 4070 Laptop GPU in
Figure 6. Iteration times are longer than presented in Figure 4 due
to the added time from device synchronization to time each algo-
rithm step (around 2-3ms). We compare the iteration times on fi-
nance256 for GraphWaGu and our method, along with comYoutube
for our method. Results show that our method drastically improves
both tree creation and repulsive force computation, although the
tree creation improvement is much more significant. When scaling
up to larger datasets, while the iteration times for GraphWaGu are
dominated by the quadtree construction step, the majority of itera-

tion time in our method comes from the computation of repulsive
forces. From this, we see that the performance improvements of
our method can be attributed to the parallelization of our tree con-
struction algorithm, which effectively divides the workload among
GPU threads, compared to the single-threaded construction algo-
rithm used by GraphWaGu.

5 CONCLUSION

We have presented an approach for accelerating web-based graph
drawing through a parallel bottom-up quadtree construction algo-
rithm implemented in WebGPU. Our method significantly improves
upon the state-of-the-art by utilizing Hilbert spatial ordering for ef-
ficient GPU quadtree construction and optimizing quadtree traver-
sal for force computation. The experimental results demonstrate
massive performance gains, with speedups ranging from 15.7× to
69.5× compared to GraphWaGu on a dedicated GPU, and 15.0×
to 35.2× on integrated graphics. Our approach also enables lay-
out creation of much larger graphs than previously possible in
web-based environments, successfully handling graphs with almost
100,000 nodes and 6.6 million edges while maintaining interactive
performance. Our approach not only improves computational effi-
ciency, but also reduces memory requirements, making our solution
particularly well-suited for web-based applications. By leveraging
the full capabilities of modern GPUs through WebGPU, we demon-
strate that graph visualization can be effectively implemented in
web browsers without compromising on performance or scalabil-
ity.

ACKNOWLEDGMENTS

This work was partly funded by NSF Collaborative Research
Awards 2401274 and 2221812, and NSF PPoSS Planning and Large
awards 2217036 and 2316157.

REFERENCES

[1] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation al-
gorithm. nature, 324(6096):446–449, 1986. 2

[2] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S.-M.-R. Beheshti,
A. Barnawi, and S. Sakr. Large scale graph processing systems: sur-
vey and an experimental evaluation. Cluster Computing, 18:1189–
1213, 2015. 1

[3] G. G. Brinkmann, K. F. Rietveld, and F. W. Takes. Exploiting gpus for
fast force-directed visualization of large-scale networks. In 2017 46th
International Conference on Parallel Processing (ICPP), pp. 382–
391. IEEE, 2017. 2

[4] M. Burtscher and K. Pingali. An efficient cuda implementation of
the tree-based barnes hut n-body algorithm. In GPU computing Gems
Emerald edition, pp. 75–92. Elsevier, 2011. 2

[5] L. Dyken and P. Poudel. Graphwagu: Gpu powered large scale graph
layout computation and rendering for the web. In Eurographics Sym-
posium on Parallel Graphics and Visualization, 2022. 1, 2, 4

[6] P. Eades. A heuristic for graph drawing. Congressus numerantium,
42:149–160, 1984. 2

[7] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4:1–9, 1974. 1

[8] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991. 2

[9] R. Gove. A random sampling o (n) force-calculation algorithm for
graph layouts. In Computer Graphics Forum, vol. 38, pp. 739–751.
Wiley Online Library, 2019. 2

[10] A. Grama, V. Kumar, and A. Sameh. Scalable parallel formulations
of the barnes-hut method for n-body simulations. In Supercomputing
’94:Proceedings of the 1994 ACM/IEEE Conference on Supercomput-
ing, pp. 439–448, 1994. doi: 10.1109/SUPERC.1994.344307 2

[11] D. Harel and Y. Koren. A fast multi-scale method for drawing large
graphs. In International symposium on graph drawing, pp. 183–196.
Springer, 2000. 2

[12] T. Kamada, S. Kawai, et al. An algorithm for drawing general undi-
rected graphs. Information processing letters, 31(1):7–15, 1989. 2

[13] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis,
M. Henderson, Y. Hu, and R. Sandstrom. The suitesparse ma-
trix collection website interface. Journal of Open Source Software,
4(35):1244, 2019. 1, 4

[14] F. Lipp, A. Wolff, and J. Zink. Faster force-directed graph drawing
with the well-separated pair decomposition. In International Sympo-
sium on Graph Drawing, pp. 52–59. Springer, 2015. 2

[15] N. Liu, D.-s. Li, Y.-m. Zhang, and X.-l. Li. Large-scale graph pro-
cessing systems: a survey. Frontiers of Information Technology &
Electronic Engineering, 21(3):384–404, 2020. 1

[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pp. 135–146, 2010. 1

[17] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz. Analysis of the clus-
tering properties of the hilbert space-filling curve. IEEE Transactions
on Knowledge and Data Engineering, 13(1):124–141, 2001. doi: 10.
1109/69.908985 4

[18] N. Morrical, A. Sahistan, U. Gudukbay, I. Wald, and V. Pascucci.
Quick clusters: A gpu-parallel partitioning for efficient path tracing of
unstructured volumetric grids, 08 2022. doi: 10.13140/RG.2.2.34351
.20648 2, 3

[19] M. K. Rahman, M. Haque Sujon, and A. Azad. BatchLayout:
A Batch-Parallel Force-Directed Graph Layout Algorithm in Shared
Memory . In 2020 IEEE Pacific Visualization Symposium (PacificVis),
pp. 16–25. IEEE Computer Society, Los Alamitos, CA, USA, June
2020. doi: 10.1109/PacificVis48177.2020.3756 2

[20] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiq-
uity of large graphs and surprising challenges of graph processing.
Proceedings of the VLDB Endowment, 11(4):420–431, 2017. 1

[21] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body
algorithm. In Proceedings of the 1993 ACM/IEEE Conference on Su-
percomputing, Supercomputing ’93, p. 12–21. Association for Com-
puting Machinery, New York, NY, USA, 1993. doi: 10.1145/169627.
169640 2

[22] WebGPU. https://gpuweb.github.io/gpuweb/. 1
[23] J. Zhang and L. Gruenwald. Efficient quadtree construction for in-

dexing large-scale point data on gpus: Bottom-up vs. top-down. In
ADMS@VLDB, 2019. 2

https://gpuweb.github.io/gpuweb/

	Introduction
	Background and Related Work
	Implementation
	Quadtree Construction
	Repulsive Force Computation

	Evaluation
	Datasets
	Experimental Setup
	Results

	Conclusion

