
Communication-Avoiding Recursive Aggregation
Yihao Sun

Dept. Electrical Engineering
and Computer Science

Syracuse University
Syracuse, USA
ysun67@syr.edu

Sidharth Kumar
Dept. Computer Science

University of Illinois
at Chicago

Chicago, USA
sidharth@uic.edu

Thomas Gilray
Dept. Computer Science
University of Alabama

at Birmingham
Birmingham, USA

gilray@uab.edu

Kristopher Micinski
Dept. of Electrical Engineering

and Computer Science
Syracuse University

Syracuse, USA
kkmicins@syr.edu

Abstract—Recursive aggregation has been of considerable
interest due to its unifying a wide range of deductive-analytic
workloads, including social-media mining and graph analytics.
For example, Single-Source Shortest Paths (SSSP), Connected
Components (CC), and PageRank may all be expressed via
recursive aggregates. Implementing recursive aggregation has
posed a serious algorithmic challenge, with state-of-the-art work
identifying sufficient conditions (e.g., pre-mappability) under
which implementations may push aggregation within recursion,
avoiding the serious materialization overhead inherent to tradi-
tional reachability-based methods (e.g., Datalog).

State-of-the-art implementations of engines supporting recur-
sive aggregates focus on large unified machines, due to the chal-
lenges posed by mixing semi-naı̈ve evaluation with distribution.
In this work, we present an approach to implementing recursive
aggregates on high-performance clusters which avoids the com-
munication overhead inhibiting current-generation distributed
systems to scale recursive aggregates to extremely high process
counts. Our approach leverages the observation that aggregators
form functional dependencies, allowing us to implement recur-
sive aggregates via a high-parallel local aggregation to ensure
maximal throughput. Additionally, we present a dynamic join
planning mechanism, which customizes join order per-iteration
based on dynamic relation sizes. We implemented our approach
in PARALAGG, a library which allows the declarative implemen-
tation of queries which utilize recursive aggregates and executes
them using our MPI-based runtime. We evaluate PARALAGG
on a large unified node and leadership-class supercomputers,
demonstrating scalability up to 16,384 processes.

Index Terms—relational algebra, aggregation, communication-
avoiding algorithms

I. INTRODUCTION

Hybridizing deductive reasoning with monotonic aggrega-
tion is a key implementation strategy used in graph mining,
social-media analytics, and program analysis. These applica-
tions involve extreme deductive throughput, computing results
over graphs with billions of edges. Considerable attention
has been given to the high-performance and scalable im-
plementation of recursive aggregation, targeting both unified
nodes [1] and clusters [2]–[4]. Unfortunately, it is not obvious
how to scale current implementation strategies for recursive
aggregates to high-performance clusters and supercomputers
due to inherent communication overhead. State-of-the-art work
in recursive aggregation is built upon unified multi-core ma-
chines, in part due to the inherent communication complexity
in a distributed setting [1].

In this paper, we tackle this challenge of scaling recursive
aggregation to high-performance clusters using the Message-
Passing Interface (MPI), designing a communication-avoiding
algorithm to ensure sufficient work is available at very high
process counts. We leverage recent developments in parallel
relational algebra to design PARALAGG, a C++ library which
enables the declarative implementation of relational algebra
kernels extended with recursive aggregates. Our experiments
show that PARALAGG scales favorably, even at high process
counts (up to 16,384 processes).

Key to our approach is to recognize that current approaches
to distributed recursive aggregates force the communication
of intermediate results–even when those intermediate results
may not be usefully observed until the end of the fixed-
point. This observation leads us to a restricted form of recur-
sive aggregates based on functional dependencies, following
semantic inspiration from systems such as DatalogFS and
DeALS [4]. Operationally, this restriction enables us to use the
independent columns as keys to colocate tuples and perform
a highly-parallel local aggregation. Additionally, our scheme
allows local aggregation to be fused with tuple deduplication,
enabling a highly-expressive class of operations with very low
added communication overhead compared to state-of-the-art
iterated relational algebra systems.

We make these contributions to the literature:

• An extension of double-hashed parallel relational algebra
to include monotonic aggregation, and subsequently en-
able substantial algorithmic improvements that hinder the
application of parallel RA to recursive aggregate queries.

• A communication-optimized join-layout algorithm which
intelligently selects relation order for joins on-the-fly.

• An implementation of our algorithm as a C++ library,
PARALAGG, and its application to declaratively imple-
ment recursive queries including SSSP, CC, and PageR-
ank.

• An evaluation showing that PARALAGG outperforms
known state-of-art tools for recursive aggregation on large
unified nodes and that PARALAGG’s results are robust
across a variety of graphs (from SuiteSparse [5]) at
medium scale (256 and 512 processes) and and that
PARALAGG achieves healthy strong scaling (up to 16,384
processes) on the Theta supercomputer.

II. BACKGROUND

A. Relational Algebra

Relational algebra (RA) comprises a set of mathematical
primitives which operate over tables of tuples of some fixed
arity; in the context of a relational database, each tuple
corresponds to a row. Standard relational algebra operators
include selection (σ), which filters tuples from a relation based
on a specified condition, projection (Π), cartesian product (×),
renaming (ρ), and join (▷◁), which combines two relations
based on a common attributes. Used in the appropriate com-
bination, these RA operators intuitively correspond to queries
in relational query languages (namely SQL).

We are interested in recursive queries, which extend the
expressive power of SQL to enable queries including graph
reachability and program analysis [6]. Such queries comprise
the Datalog language; Datalog programs consist of a set of
rules, each of which is a Horn clause (clauses involving a
single positive literal). For example, we may write transitive
closure in Datalog as follows:

Path(x, y) ← Edge(x, y).
Path(x, z) ← Path(x, y),Edge(y, z).

Modern Datalog engines leverage a rich history of work in
the databases community which understands such queries as
efficient RA plans [7], [8]. These engines proceed in iterations,
generating new tuples based on the results of an RA operation
which is subsequently merged into the database. Specific to
this example, the Path table is extended (via set union) with
the results of both queries:

Path ← Path ∪ Edge ∪ Path ▷◁ (ρ1/0 Edge)

The first Path is due to the fact that all tuples in Path stay
in Path, the inclusion of Edge corresponds to the first rule
(which copies Edge into Path), and the join between Path and
Edge operationalizes the last (inductive) rule.

B. Stratified Aggregation

Unlike SQL queries (which terminate by virtue of an
obviously-finite state space), the tractability of Datalog queries
is carefully constructed to ensure that Datalog programs enu-
merate a finite number of tuples. Vanilla Datalog achieves this
by allowing only Horn clauses over a finite set of atoms (which
may not be extended during computation), however practical
implementations include Turing-equivalent extensions with
operations such as builtins, negation, and aggregation. To
ensure a computational interpretation, only stratified negation
and aggregation are allowed: this enables straightforward
aggregation and trivially deciding ¬R via inclusion [9].

As an example of stratified aggregation and its shortcom-
ings, we present this attempt at single-source shortest paths
(SSSP) in Datalog (Edge’s third column is a length):

Path(n, n, 0) ← Start(n).
Path(from, to, l + n) ← Path(from,mid, l),

Edge(mid, to, n).
Spath(from, to, $MIN(l)) ← Path(from, to, l).

The program executes in two strata: the first computes Path
recursively to a fixed-point, and the second stratum computes
Spath by aggregating $MIN over the set of values for each pair
(from, to). This issue with this query is its poor asymptotic
performance compared to Dijkstra’s algorithm [10]. When we
inspect the join plan, we can observe the algorithmic overhead:

Path = Path ∪ Π(from,to,l+n)(Path ▷◁ Edge)
Spath = Π(from,to,$MIN(l))(Path)

C. Recursive Aggregation

Solving the materialization challenge inherent to the previ-
ous SSSP query is impossible in vanilla Datalog. Implement-
ing SSSP with the desired asymptotic complexity requires the
use of recursive aggregation: Horn clause rules in a loop with
a monotonic usage of aggregation. Harmoniously integrating
recursive aggregation with Datalog requires semantic care,
especially to ensure termination. The next section details our
approach, for now we sketch an improved version of SSSP
using recursive aggregates provided by our tool PARALAGG:

Spath(n, n, 0) ← Start(n).
Spath(from, to, $MIN(l + n)) ← Spath(from,mid, l),

Edge(mid, to, n).

The improved asymptotic complexity of the above program
is crucially improved by the usage of the $MIN aggregate in
the head of the recursive rule—it allows performing aggrega-
tion at each iteration, collapsing the information to store only
the length of the shortest path. Recursive aggregation is strictly
more expressive than stratified aggregation, capturing a broad
array of graph algorithms beyond Datalog’s reach including
SSSP, connected components (CC), and PageRank.

Unlike stratified aggregation, extending Datalog with re-
cursive aggregation requires serious effort, both semantically
(establishing a well-founded semantics) and operationally (ex-
tended RA kernels supporting recursive aggregates) [11], [12].
The key intellectual complication is the challenge of semi-
naı̈ve evaluation in the presence of recursive aggregates. Semi-
naı̈ve evaluation prevents a Datalog engine from unneces-
sarily recomputing already-known results, providing crucial
asymptotic benefits. With respect to plan compilation, this is
achieved by splitting each table into several versions: new
(yet-undiscovered tuples discovered this iteration), ∆ (tuples
discovered last iteration), and full (tuples discovered in any
previous generation). Using recursive aggregation, we may
finally compute SSSP with the desired asymptotic complexity:

Spathnew = Π(from,to,l+n)(Spath∆ ▷◁ Edge)
Spath∆ = Π(from,to,$MIN(l))(Spathnew ∪

(σ(from,to)Spathnew ▷◁ Spathfull))

In the next section, we explicate a key restriction (obeyed
by common recursive aggregates) which enables us to sidestep
the necessary communication overhead otherwise necessitated
by the combination of recursive aggregation with semi-naı̈ve
evaluation. This restriction is key to achieving the strong
scaling results we present in section V.

D. Parallel Relational Algebra

Because recursive aggregation strictly extends Datalog, our
work builds upon state-of-the-art efforts in the distribution
and parallelization of RA kernels on supercomputing clusters.
Specifically, we extend Balanced Parallel Relational Algebra
(BPRA), a recent approach to iterated relational algebra with-
out aggregation which provides an API of parallel RA primi-
tives that scale to supercomputers [13], [14]. BPRA distributes
relations via double hashing [15]: tuples are distributed across
a cluster via a bucket/sub-bucket decomposition and balanced
dynamically. This enables a highly-parallel implementation of
binary join which isolates local join communication to com-
munication within a sub-bucket; this avoids the costly all-to-all
communication [16], [17] until new tuples are materialized.

The semantic tension between semi-naı̈ve evaluation and
aggregation extends to practical challenges when distributing
relations, and inhibits the direct application of these methods.
Our approach, realized in PARALAGG, targets this intersection
of recursive aggregates, semi-naı̈ve evaluation, and distribu-
tion. Many distributed implementations (e.g., RaSQL, Big-
Datalog) are based on a common restriction, pre-mappability
(PreM), which characterizes when aggregation may be pushed
down into joins, rather than generating products and aggregat-
ing at the end [18]. PreM, obeyed by all aggregate operators
provided by these systems, ensures that semi-naı̈ve evaluation
is monotonic even in the presence of partial aggregates; this
issue is closely related to communication, as we will soon see.

III. RECURSIVE AGGREGATION: WITH AND WITHOUT
COMMUNICATION

We now explain the challenges involved in implementing
recursive aggregation in the context of BPRA, using our SSSP
query as an example. The high level approach is to implement
aggregation as an extension of BPRA’s binary joins, which is
possible when aggregated columns are not joined upon them-
selves. Our approach is built on the intuition that a monotonic
aggregation generalizes Datalog’s fact deduplication, allowing
information to be “collapsed” in a local manner. Throughout
this section, we will consult Figure 1, which illustrates a single
iteration of the inductive rule of SSSP:

Spath(from, to, $MIN(l + n)) ← Spath(from,mid, l),
Edge(mid, to, n).

Our framework construes this as one combined kernel which
(a) joins Spath and Edge and then (b) aggregates the minimum
value l+n (c) for each pair of (from, to). For the purposes of
illustration, we sketch two ranks only, in practice thousands
of ranks may be used. As mentioned, BPRA distributes each
relation throughout a cluster via a bucket-sub-bucket decom-
position: we observe that both Spath and Edge are present on
both ranks, as would be all other relations. For example, we
see two tuples (among others) in Spath on rank 1: (1, 2, 3)
and (1, 2, 0). These both reside on rank 1 because they have
identical join columns (highlighted in yellow).

BPRA’s Join Phases: We now review BPRA’s iterated
joins, in anticipation of our contribution which generalizes
BPRA’s joins to enable monotonic aggregation. BPRA’s joins
occur in a sequence of phases, shown at the top of Figure 1.
BPRA achieves high throughput by separating joins into a lo-
cal join within a bucket, followed by all-to-all communication
to distribute the results. This approach avoids communication
by ensuring joins are done in a highly parallel manner, with
communication costs proportional to the amount of generated
data. As we will soon see, our insight is that this naturally-
communication-avoiding structure can be extended to support
common usages of recursive aggregation.

Going from left to right, iterations begin with balancing,
which shuffles work to aid overall throughput–in this case the
tuple (1, 1, 0) is moved to rank 2. Next, our system employs
dynamic join planning, which uses relation sizes to switch
relation direction on a per-iteration basis—avoiding commu-
nication overhead involved in serializing the larger relation.
We discuss dynamic join planning in Section IV-D, but found
it to be highly effective in practice, showing performance
improvements of 2× (see Figure 2).

Next, we perform intra-bucket communication to replicate
tuples across a bucket; in our bucket/sub-bucket distribution,
tuples are assigned a bucket based on their join columns and a
sub-bucket via their non-join columns. Thus, all tuples sharing
the same join column are assigned the same bucket (but not
necessarily sub-bucket), and the join result can be computed
inside each bucket. However, because two tuples in the same
bucket may have different sub-buckets and may reside on
different physical ranks, our local join depends upon intra-
bucket communication. Intra-bucket communication serializes
the smaller relation, replicating it across sub-buckets to enable
a local join. After intra-bucket communication, all relevant
tuples are gathered on their correct rank, and local join
happens in a highly-parallel manner. Once local join finishes,
newly-generated tuples will be distributed via their bucket/sub-
bucket decomposition.

Deduplication: The last stage in effecting BPRA’s binary
join is deduplication, which gathers tuples on a single node and
assigns each distinct tuple a unique ID. The preceding all-to-
all phase sends each newly-generated tuple to its appropriate
bucket based on the hash of its join columns. The correspond-
ing rank checks if the tuple exists within its local copy of the
relation and, if not, allocates a new tuple and assigns a unique
ID via bump-pointer allocation, “materializing” the tuple.

A. Communication-Avoiding Local Aggregation

We now explain our approach to communication-avoiding
recursive aggregation as an extension of BPRA’s deduplci-
ation. To see our approach in action, see the right side of
Figure 1, which sketches two distinct scenarios. On the top,
we see that rank 1 currently stores the tuple (1, 4, 2), and has
received a new tuple (1, 4, 5). The $MIN aggregator operates
on the last column; because 5 > 2, no insertion is performed
into Spath’s ∆ (doing so would constitute excess work), which
is sound as no new information has been discovered.

Fig. 1. Sequential flow diagram for a single iteration of the SSSP query in PARALAGG. The Spath and Edge relations are partitioned across two ranks.
Dynamic join planning decides Edge should be the outer relation to minimize communication. Local aggregation happens in parallel within each rank.

We observe that common recursive aggregates satisfying
PreM also obey a restriction which enables us to implement
them in a highly-parallel manner with minimal communication
overhead: aggregated columns are never joined upon within a
fixed point. This observation allows us to implement recursive
aggregates as a combination of gather and local aggregation,
which we accomplish by extending BPRA’s deduplication.
Unfortunately however, state-of-the-art distributed tools do not
take advantage of this fact, instead treating aggregated columns
in the same manner as normal relations with respect to
indexing and query optimization. This presents communication
overhead due to the “leaky” nature of partial results produced
by recursive aggregates. To see why, Consider an extension of
SSSP to compute the longest shortest path (Lsp):

SpNorm(f, t, v) ← Spath(f, t, v).
Lsp(l) ← SpNorm(, , v), l = MAX(v).

Here, SpNorm is a copy of the Spath relation computed earlier.
The second rule aggregates the globally-longest path. In the
semi-naı̈ve evaluation of Lsp, all tuples which appear in the ∆
version of Spath are copied to SpNorm. However, during the
computation of Spath, many path lengths are transient and will
be purged from the database once a shorter path is found—
thus, tracking their intermediate results imposes unnecessary
communication in the setting where these partial results must
be communicated. If the copy into SpNorm is computed within
the same fixpoint as Spath, intermediate results will “leak”
and cause SpNorm to contain all possible paths in the graph.
However, only the shortest paths will actually be used in the

computation of Lsp; this intermediate tuple leakage represents
algorithmically-imposed overhead (see Definition 2 in [19]).

Formalization: We now present a sketch of our for-
malization, which extends the set-theoretic and fixed-point
semantics of Datalog to chains of deductions on semilattices.
Inspired by SociaLite [20] and previous research on recursive
aggregators [12], we utilize semilattice-based relations in PAR-
ALAGG to extend semi-naive evaluation efficiently. A lattice
is a partially-ordered set with two operators, join (least-upper
bound, x⊔ y) and meet (greatest-lower bound, x⊓ y), defined
on every pair of elements [21]. For example, for any set S,
the power set P(S) is a lattice with ⊔ = ∪ and ⊓ = ∩. If
only the join operator (⊔) is defined, the partially-ordered set
is then called a join semilattice.

After lifting a set-based relation into a semilattice, we can
define the following lifted fixpoint evaluation for our aggre-
gated relations L(r1, ..., rn, d1, ..., dn), where r1, ..., rn are
independent columns and d1, ..., dn are dependent columns:

Li+1 = { (r1, ..., rn,
⊔

dep) | (r1, ..., rn) ∈ Li ∪ L∆i

∧ dep = FL(r1, ..., rn)}
L∆i+1 = { (r1, ..., rn, d1, ..., dn)

| (r1, ..., rn, d1, ..., dn) ∈ Li+1

∧ (d1, ..., dn) /∈ Π(d1,...,dn)(Li)}
where

FL = Πd1,...,dn
(σr1,...,rn=x1,...,xn

L)

Using the lattice join operator in the computation of Li

guarantees the ascending chain condition and assures that,

assuming the lattice is of finite height, the program eventually
terminates.

IV. IMPLEMENTATION

PARALAGG is implemented as a C++ library which provides
a set of declarative relational algebra and recursive aggregator
primitives to implement the relational algebra kernels. We
now describe how our implementation of PARALAGG leverage
parallelism and avoid unnecessary communication.

A. Data Distribution

The current distributed engines (including RaSQL, BigDat-
alog, and SociaLite) do not differentiate their tuple distri-
bution schemes based on whether a relation is a recursive
aggregate, using hash-based partitioning to distribute both
recursive aggregates and non-aggregated relations. We argue
this strategy incurs communication overhead which we want
to avoid (similar issues are seen in the engineering of lock-free
datastructures on large multicore machines [1]). These current-
generation engines treat aggregated columns in an identical
manner to non-aggregated relations. This forces aggregated
columns to participate in indexing and query optimization,
rather than ignoring these dependent columns.

Our implementation optimizes the distribution of recursive
aggregates by leveraging two key insights. First, to minimize
communication, it is essential to use non-aggregated columns
for indexing while excluding aggregated columns from the
indexing process. By doing so, all tuples sharing the same
non-aggregated columns will be automatically gathered to-
gether when generated, eliminating the need for additional
communication overhead during recursive aggregation. Pre-
existing parallel relational algebra systems require indexing
and partitioning to accommodate normal join operations first,
and all join column values may affect data distribution. For
example, our investigation into the implementations of both
BigDatalog and RaSQL use a global hashmap with a special
partition key to store intermediate results during recursive
computations. This inter-node recursive aggregation operation
and global auxiliary structure greatly increases the commu-
nication overhead and, we believe, represents a significant
impediment to achieving the highest-possible scale.

The second key insight in distributing recursive aggregation
is that, based on the above restriction, we may implement
aggregation for no additional communication overhead by
fusing local aggregation with deduplication. In normal rela-
tions, deduplication performs elementwise comparison, and (in
our setting) occurs in parallel based on the tuple’s bucket.
In the setting of recursive aggregates, deduplication must
also be extended to “collapse” information: instead of merely
checking for the existence of a tuple, deduplication for recur-
sively aggregated relations applies a reducer function across all
gathered results to produce the result of the local aggregation.
Like normal relations, this fused deduplication/aggregation
pass is performed in a highly-parallel manner; no extra com-
munication overhead is required.

class RecursiveAggregator {
using dep_val_t = set<vector<column_t>>;
// get the dependent column value from a tuple
virtual vector<column_t>
dependent_column(tuple_t t);
// comparator to form a Partial order set
virtual partail_order_t
partial_cmp(dep_val_t t1, dep_val_t t2);
// parital aggregate 2 values
virtual dep_val_t
partial_agg(dep_val_t t1, dep_val_t t2);

}

Listing 1: Recursive aggregate API in PARALAGG

class min_dep : RecursiveAggregator {
// dependent columns has size 1
vector<column_t>
dependent_column(tuple_t t){

return {t.back()}};
// ...
// min_val return smallest value in set
dep_val_t
partial_agg(dep_val_t t1, dep_val_t t2) {

return {min(t1, t2)}};
}

Listing 2: Implementing the $MIN functional dependence
using PARALAGG.

B. API and C++ implementation

PARALAGG is implemented as a C++ API, shown in listing
1. The dependent_column function is used by PARALAGG
to compute the dependent column of a stored tuple, while
the partial_cmp function is overloaded to define the
partial order for the independent columns. partial_agg
will be applied on newly-generated tuples and the currently-
accumulated result to generate the updated accumulator. We
used this API to implement a plethora of recursive aggregates
from the literature including $MIN, $MAX, $MCOUNT,
and several others. For example, to implement $MIN we
implement partial_agg as a function which returns the
smaller of t1 and t2, as shown in Listing 2.

C. Spatial Load Balancing

Balancing tuple load across ranks is important for the scal-
ability of a distributed relational-algebra engine. It has been
shown that sub-bucketing based on non-indexed columns is a
useful way to balance key-skewed data [13]. Sub-bucketing
means that after normal data partitioning, if the data size on
each process is still imbalanced, the imbalanced relation will
be logically divided into some sub-buckets and then transmit
the imbalanced part of data to other processes that have less
data. Imbalance arises when multiple tuples in the engine share
the same indexed columns. For instance, in the SSSP query
(Section II), where the Edge relation is indexed based on
the first column, data imbalance may occur if certain vertices
in the input graph have many outgoing edges. As a result,
processes storing these vertices will have more data compared
to others, leading to an uneven distribution of workload. Sub-
bucketing effectively resolves this data imbalance, signifi-

cantly improving query scalability. However, sub-bucketing
may cause two tuples with the same indexing column to be
computed on different processes, violating the requirement
for communication-avoiding data distribution. To maintain the
correct result, we include a MPI ALL2ALLV-based intra-
bucket communication phase. Although spatial load balancing
introduces extra overhead, our experiments in Section V-B
demonstrate that it pays off when running with a large number
of ranks..

D. Communication-Avoiding Join Layout

PARALAGG has several communication epochs interspersed
between computation phases, in particular, there is an intra-
bucket communication phase right before the local join (see
Figure 1). This communication phase is instrumental in fa-
cilitating the local joins, as it performs the key task of co-
locating all matching tuples to their appropriate processes.
As PARALAGG is built atop MPI, we rely on point-to-point
communication using MPI_Isend and MPI_Ireceive to
perform the intra-bucket communication. MPI only works with
serialized 1D data buffers, and therefore one of the relations
in binary join that is internally stored using a nested BTree
data structure must be serialized before it can be transmitted
over the network. In this section, we present our heuristic to
decide which of the two relations is chosen to be transmitted
over the network.

Definition IV.1 (Outer/Inner Relation). In our parallel binary
joins, we’ll call the relation being serialized and transmitted
over the network the outer relation and the one that does not
move the inner relation. The inner relation continues to be
stored in a nested Btree data structure.

For efficiency, we want to select a smaller relation as the
outer relation. This heuristic leads to less load on both the
computation phase of the join and the pre-join communication
phase (intra-bucket data exchange). The outer relation is
scanned over in its entirety, and is transmitted among sub-
buckets within each bucket to prepare for a parallel join.
The inner relation stays put and benefits from indexing and
O(log n) access during the join.

At the start of iteration shown in Figure 1, the tuple size of
relation Edge is much smaller than that of the relation Spath on
both rank 1 and rank 2. Therefore, both ranks vote for Edge as
outer relation, and broadcast their choice to all ranks. All MPI
rank agreed to put Edge on outer position, so tuples Edge in
edge are serialized and placed in inter-bucket buffer, and then
sent to all sub bucket processes. Since relation Edge only has
one sub-bucket in this example, no data transmission occurs
here. Figure 2 shows the difference it can make to select the
smaller of the two relations as the outer one when using this
design for parallel RA.

Our dynamic join planning utilizes a simple voting Al-
gorithm 1 to coordinate each process and decide which re-
lation should be used on the outer side. In a binary join
output← relation1(...), relation2(...), before the start of each
iteration, each process performs (in parallel) a local relation

Algorithm 1 Join-order Selection Algorithm
localOuter← relation1.size ≥ relation2.size ? 0 : 1
ranksWantOuter← MPI Allreduce(MPI Sum, localOuter)

▷ All ranks synchronize here
InnerRelation← relation1
OuterRelation← relation2
if ranksWantOuter ≥ (TotalRankNum÷ 2) then

swap(OuterRelation,InnerRelation)
end if
intra bucket comm buffer← OuterRelation.serialize()

size comparison: if relation1 is smaller, outer join local flag
will be set to 1. Next, a collective MPI Allreduce operation
will quickly tally the results of the vote and decide join
direction. If the summation is more than half of the total
process number, relation1 will be set as the outer relation.
The inclusion of MPI Allreduce during outer relation selection
does introduce additional communication overhead. However,
it is necessary for ensuring that all nodes use the same outer
relation. As we can see in Algorithm 1, the data size used
in voting is limited to a single 8-bit integer. Despite this
added coordination overhead, our experiments in Section V-B
demonstrate that it significantly reduces the size of outer
relation transmission and the computation required for local
joins on real-world datasets. Our technique takes inspiration
from the dynamic plans of Soufflé and query planners for
SQL, though our particular form of dynamic join planning
is customized to avoid communication in the setting of it-
erated relational joins and recursive aggregates. Ultimately
we provide no formal guarantee that our communication-
avoiding approach will universally accelerate join operations
for arbitrary queries and input data. However, our large-
scale experiments in Section V demonstrate promising results,
indicating the practical usefulness of our approach for the
queries we evaluate.

V. EVALUATION

We evaluated PARALAGG, asking three research questions:
RQ1 What is the impact of our optimization technique?
RQ2 How do queries by PARALAGG perform compared

to state-of-the-art systems on large servers?
RQ3 How do queries written using PARALAGG scale on

leadership-class supercomputers?
We evaluate RQ1 by analysing data distribution and speed

difference between optimized program and baseline version.
We evaluate RQ2 by comparing the runtime of PARALAGG (at
several thread counts) versus two recursive aggregate engines
(RaSQL [3] and SociaLite [20]) on a mid-size server. We
evaluate RQ3 by running CC and SSSP on Supercomputer
at up to 16,384 processes.

In RQ1 and RQ3, we used the Theta supercomputer [22].
Theta is a Cray XC40 machine deployed at Argonne Lead-
ership Computing Facility. It has 4,392 computation nodes,
each node contains a 64 core Intel Phi Knights Landing

Fig. 2. Strong scaling comparisons for SSSP on Theta (Twitter dataset),
broken down by phase. At each process count, we measure a Baseline (“B”)
and compare against our Optimized (“O”) implementation.

7230@1.3Ghz and 192 GiB DDR4. Theta also supports MC-
DRAM and hyperthread on every computation node (in our
experiments, no hyperthread is used). We set MCDRAM to flat
mode, and NUMA mode to “quad.”. The default sub-bucket
size of the input relation is 8 sub buckets per rank. In both
testing we used a snapshot of Twitter from 2010 [23]. The
Twitter graph contains 1,468,365,182 edges, roughly 35GB in
size. In RQ2 testing, Our experiments were run on a server
running Ubuntu 20.04 LTS with an AMD EPYC 7713P 64-
Core (128-thread) 1.996GHz processor and 480GiB RAM.

A. Queries

Single Source Shortest Path (SSSP): As we mentioned in
section II, SSSP can be expressed elegantly using PARALAGG.
It serves as a useful benchmark in measuring the throughput
of recursive aggregates, as the recursive aggregation forms a
tight loop. We designate ten arbitrarily selected start nodes
from each of our graphs.

Connected Components (CC): Connected components
are computed as follows:

cc(n, n) ← edge(n,).
cc(y, $MIN(z)) ← cc(y, z), edge(x, y).
cc representive node(n) ← cc(, n).

The $MIN aggregate canonicalizes a component representa-
tive, efficiently compressing connected components in space.
By contrast, implementations of CC in Datalog engines run out
of memory due to materialization overhead and the inability
to avoid materializing a product of all nodes within the
component.

B. RQ1: Measuring the Effects of our Optimizations

We compared the performance of two versions of the SSSP
program in PARALAGG: the baseline version with no spatial
load balancing or communication-avoiding join optimization,
and the optimized version with balancing and communication-
avoiding join optimization enabled. For both runs, we used the
Twitter dataset on Theta. Our results are shown in Figure 2:
generally, the optimized implementation’s running time was
cut in half compared to the baseline. The improvement was

Fig. 3. Cumulative density of tuple distribution across 4,096 ranks, illustrating
the imbalance when using (orange) one and (blue) eight sub-buckets.

mainly in local join computation: at 512 cores, the optimized
program’s local join time was only 20% of the baseline
program. This is because the Spath relation is much smaller
than the Edge relation at the beginning. Serialization of
edges mistakenly placed on the left side in the join would
cause significant memory consumption and almost reduce the
join operation to 1 billion times linear comparison in some
iterations. With optimization, Spath is automatically placed
on the outer side, making the join speed closer to a BTree
search operation. It is worth noting that the “comm” in the
figure, representing the communication time for distributing
join results, remain the same in the optimized program. This
phase was independent of our optimized join layout and im-
plemented using MPI Alltotallv. Therefore, our optimization,
which specifically targets the join phase, does not accelerate
the “comm” time.

In Figure 2, we observe scalability declines after roughly
2k processes. We investigated this issue by studying tuple
distribution across ranks. The “original” curve in 3 shows that
turning off sub-bucket load balancing in the baseline leads
to data imbalance across ranks, with the largest rank had ten
times more tuples than the smallest rank. This imbalance is
mainly due to Twitter dataset’s nature as a social network
dataset, where some users have millions of followers, causing
all edges with the same starting node to be stored on the same
rank.

We next ran the CC query using the Twitter dataset to study
whether PARALAGG’s spatial load balancing can ameliorate
the slowdowns we observed in Figure 2. The blue curve in
Figure 3 shows that using 8 sub-buckets successfully mitigated
the data imbalance, reducing the tuple size difference on
ranks to around 2 times. In terms of scalability and local
join computation time, we compared the performance of the
8 sub-bucket configuration with the baseline setting, as shown
in Figure 4. Due to imbalance, the query with 1 sub-bucket
reached its scalability limit after 2,048 processes. Beyond this
point, adding more cores slowed down the query. However,
the balanced program outperformed the imbalanced program
significantly after 4,096 processes and continued to scale up to
16,384 processes. We also observed that the balanced program
has longer running times compared to the imbalanced program
when the number of processes is less than 1,024. This can
be attributed to the additional intra-bucket communication re-

quired for spatial load balancing, as explained in Section IV-C.
However, our work primarily targets supercomputers, where
the impact of slower running times on relatively small numbers
of cores is considered acceptable.

Fig. 4. Local join computation time for the CC query, with one (orange) and
eight (blue) sub-buckets. Our results illustrate that sub-bucketing enables ever-
increasing gains to local join; imbalance-imposed overhead halts scalability
around 2k processes when one sub-bucket is used.

C. RQ2: Comparisons against SOTA systems on large servers

In this subsection, We run experiments at three distinct
scales: 32, 64, and 128 threads (128-thread experiments utilize
SMT). C++ code generated by PARALAGG is compiled with
gcc version 11 and OpenMPI 4.1.2. The resulting binary
is then invoked using mpirun --use-hwthread-cpus;
wall-clock times are measured via GNU time; timings for
SociaLite and RaSQL are captured using their built-in coun-
ters. SociaLite is tested in single-node mode (circumventing
network-imposed overhead) with Java 1.7. SociaLite’s paral-
lelization also requires manual partitioning of each relation,
which we achieve using indexby keywords. For RaSQL,
we use Java 1.8 and Spark 2.0.3. We set up RaSQL according
to its manual, setting data partitions equal to core count and
turning on hash shuffle optimizations. We allocate 350GB for
Java’s heap. All reported results are best of five runs.

We ran experiments using three graphs of varying sizes. The
first two, Livejournal and Orkurt, are medium-sized graphs
from the SNAP Graph dataset [24], each consisting of roughly
100 million edges. The last graph, Topcats [25], is smaller,
with only 25 million edges; we included Topcats to stress
PARALAGG’s performance with lower data loads, when the
overhead of tuple distribution may not pay off. We selected
five arbitrary nodes from each graph as entry points for SSSP.

Table I presents our experimental results, which are divided
into SSSP and CC queries. The table shows runtimes for each
tool on a per-graph basis, with results for PARALAGG, RaSQL,
and SociaLite displayed in separate rows, and columns indi-
cating the number of threads used. The fastest runtime for
each set of experiments is highlighted in bold. Our results
indicate that PARALAGG provides the consistently fastest
implementation at full thread count compared to RaSQL and
SociaLite. However, in certain situations, particularly at lower
thread counts, PARALAGG’s extra communication overhead
caused by sub-bucketing and dynamic join order optimization
may not pay off, and tuple number on each rank can be easily
balanced. For example, the CC query for Orkurt at 32 threads
took PARALAGG two minutes and one second, versus only

TABLE I
SINGLE-NODE EXPERIMENTS (M:SS) COMPARING PARALAGG, RASQL,

AND SOCIALITE ON A 64-CORE (128-THREAD) SERVER.

Thread Count
Graph Tool 32 64 128

Sh
or

te
st

Pa
th

s

LiveJournal
PARALAGG 0:31 0:19 0:11

RaSQL 0:17 0:12 0:12
SociaLite 1:06 0:37 0:41

Orkurt
PARALAGG 0:29 0:19 0:11

RaSQL 0:14 0:14 0:17
SociaLite 0:42 0:43 0:45

Topcats
PARALAGG 0:04 0:07 0:14

RaSQL 0:13 0:17 0:23
SociaLite 0:57 0:53 0:50

Twitter
PARALAGG N/A 8:13 4:40

RaSQL N/A N/A N/A
SociaLite N/A N/A N/A

C
on

ne
ct

ed
C

om
po

ne
nt

s

LiveJournal
PARALAGG 1:21 0:50 0:32

RaSQL 2:06 1:51 1:54
SociaLite 1:30 1:11 1:27

Orkurt
PARALAGG 2:01 1:06 0:36

RaSQL 0:58 0:59 0:56
SociaLite 3:04 2:49 2:51

Topcats
PARALAGG 0:18 0:13 0:23

RaSQL 0:24 0:32 0:51
SociaLite 0:47 0:39 0:41

Twitter
PARALAGG N/A 26:19 15:24

RaSQL N/A N/A N/A
SociaLite N/A N/A N/A

58 seconds for RaSQL. However, when scaling up to 128
threads, the runtime reduced to only 36 seconds. While the
PARALAGG-based implementations demonstrate much more
satisfactory scalability than either RaSQL or SociaLite (which
achieve only marginal scalability), scalability is limited when
no more work is available, and parallel benefits will quickly be
surpassed by communication overhead. For instance, the CC
query for Topcats took 13 seconds at 64 threads, while it took
23 seconds at 128 threads. RaSQL and SociaLite failed on
Twitter due to integer overflow issues, as does PARALAGG at
32 threads (balancing ensures PARALAGG works at 64 threads
and beyond); we mark these with N/A in Table I.

D. RQ3: Scaling on Theta

In previous testing, we found using larger nodes or
more cores can’t improve socialite and RaSQL’s perfor-
mance.Therefore, we consider it unnecessary to scale them
on machines with more cores. However PARALAGG’s running
time continued to decrease, so We next sought to understand
how PARALAGG would scale on a leadership-class supercom-

TABLE II
MEDIUM-SCALE EXPERIMENTS ON A VARIETY OF GRAPHS FROM THE SUITESPARSE MATRIX COLLECTION [5]. PERFORMANCE OF SSSP AND CC ARE

SHOWN AT 256 AND 512 PROCESSES ON THETA. ALL TIMES IN SECONDS.

Shortest Paths Connected Components

Graph Edges Iters Paths 256 512 Comp 256 512

flickr 9.8M 16 22M 14.4 9.3 0.6M 4.3 2.4
Freescale1 19.0M 126 9.8M 36.4 20.1 3.4M 32.4 17.4
wiki 37.2M 366 55.3M 49.8 27.5 28.9M 15.9 10.3
wb-edu 57.2M 242 15.5M 60.8 31.5 69.2M 47.1 26.3
ML_Geer 110.8M 500 43.6M 161.9 88.5 1.5M 1647.5 851.5
HV15R 283.1M 75 44.4M 320.6 164.3 2.0M 570.6 294.2
arabic 640.0M 52 402.5M 569.2 289.7 194.4M 353.6 181.9
stokes 349.3M 367 327.8M 644.3 326.4 11.4M 1755.5 892

Fig. 5. Scaling SSSP query on Theta, using Twitter
dataset.

Fig. 6. Scaling CC query on Theta, using Twitter
dataset.

Fig. 7. Detail running times of each iteration for
the SSSP on the Twitter Dataset (ran on Theta).

puter. In order to increase problem size, we run SSSP by
running on 30 arbitrarily-picked start nodes simultaneously.

Before strong-scaling runs on Theta, we verified that PAR-
ALAGG scaled well and produced correct results by running
in Theta’s debug queue (512 physical cores in total). We
selected 8 different graphs from SuiteSparse [5], varying in
size, category, and graph properties such as sparsity and
betweenness centrality. Our results are shown in Table II,
indicating generally favorable scalability and near-ideal perfor-
mance improvements when scaling from 256 to 512 processes,
with scalability gains being more apparent on larger graphs.

We then conducted strong scaling tests on Theta and plotted
the results for the SSSP query on the Twitter dataset, ranging
from 256 to 16,384 cores (Fig 5). The graph shows that
SSSP’s running time on the Twitter dataset decreased by 96%
from 256 to 16,384 cores, exhibiting near-perfect scalability
until 2,048 cores. While performance improvements slow
down after 2,048 cores, we still observed a 26% performance
improvement when scaling from 8,096 to 16,384 cores. Our
analysis revealed that BTree insertion dominated program
performance at low core counts. However, as the core count
increased, the BTree size on each rank scaled nearly-linearly,
resulting in nearly-linear scaling for insertion and updating
operations all the way to 16,384 cores. Local join was also
a significant factor in SSSP computation, and until 1,024
cores, it scaled mostly-linearly. However, the generation of

only a few thousand new delta tuples per iteration caused some
processes to starve at higher core counts, leading to non-linear
scaling. Additionally, PARALAGG’s join order optimization
required an extra synchronization phase before the real local
join operation, which was slowed down by more processes,
causing scalability to gradually saturate after 1,024 cores.

To better understand the running time results of the SSSP
query, we analyzed the running time of each iteration when
running with 1,024 cores, as shown in Figure 7. The results
show that the computation of the SSSP query on this large
graph has a long-tail dynamic, with most of the running time
in the first few iterations, and the local join computation dom-
inating the long tail. The btree operation scales well, which
explains the overall good performance and scalability since
most of the computation happens in the first few iterations.
However, local join operation in long tail scales non-linearly,
which explains why scalability drops fast in high core counts.

Results for the CC query (Figure 6) were similar to those
of the SSSP query, with a 96% decrease in running time from
256 to 16,384 cores. Near-perfect scalability was achieved
until 2,048 cores, with 60% running time improvement from
2,048 to 8,192 cores. However, at 16,384 cores, the total
running time stopped decreasing due to the ”Other” category
taking up half of the computation time. This bottleneck is
caused by sub-bucket data rebalancing inducing intra-bucket
communication(implemented using MPI All2allv) overhead,

which becomes non-negligible as the process number in-
creases. The benefit of parallelization is gradually surpassed
by communication overhead, resulting in decreased scalability.

VI. RELATED WORK

There are several relevant threads of related work.
Recursive and Monotonic Aggregation: Motivated by

the algorithmic limitations of vanilla Datalog, its extension
to arbitrary lattices has attracted significant interest in the
programming languages, logic programming, and graph an-
alytics communities [3], [4], [11], [20], [26]–[30]. Much
of this work attempts to reconcile the semantic challenges
when adding general lattices to Datalog [3], [20], [31], [32].
PARALAGG’s notion of recursive aggregation interleaved with
projection ensures that all PARALAGG programs terminate, as
the RA kernels provided by our library allow constructing
queries which satisfy Pre-Mappability [3], [32]. By contrast,
our semantics are implementation-focused, inspired by mod-
ern graph-analytics languages targeting recursive aggregation,
namely RaSQL (RaSQL is built on an improved version of
BigDatalog’ query engine and use a new SQL-like query
language called RaSQL), DeALS, and BigDatalog [2]–[4].

High-Performance Datalog Engines: Datalog has gained
popularity in optimized high-performance implementations
due to its applications in large-scale program analysis [33]–
[35], graph analytics [4], [36], [37], and related fields Initial
efforts in scaling Datalog focused on novel representations
(e.g., binary decision diagrams [34]) to enable efficient joins
or set operations (e.g., leapfrog triejoin in LogicBlox [8]).
Unfortunately, these representations have proven challenging
to parallelize and distribute, and modern engines (namely
Soufflé) rely upon explicit representations which use shared-
memory datastructures and compile to efficient relational alge-
bra kernels implemented via high-performance native code [7],
[38]. Recently, there has been significant work in extend-
ing these engines to high-performance recursive aggregate
queries on parallel unified-memory architectures. For example,
recently Soufflé added union-find datastructures (a kind of
lattice) [39], and DCDatalog works to scale recursive ag-
gregate queries while avoiding memory contention. Current
efforts in distributed Datalog (e.g. DCDatalog and Cog [40])
turn away from Spark and MapReduce-style parallelism (in-
creasingly understood to be a source of overhead [41],
[42]); that work explores many related but orthogonal direc-
tions, primarily concerned with implementing lock-free (rather
than communication-avoidant) algorithms. Our work, utilizing
high-performance kernels implemented directly via MPI, most
directly related to the recent work of Kumar et al. [13], [14],
[43], [44], which excludes lattices and monotonic aggregates.

Dynamic Query Plan Optimization: Relational query
planning has a long history, largely within the context of
RDBMS systems [45]–[49], often powered by cardinality
estimation methods (e.g., the IK/KBZ family of algorithms
[50]). Modern work in join plan compilation focuses on
efficiently utilizing modern architectural elements, [51], par-
allelizing plan selection [52], and dynamic switching [53].

The communication-optimized join switching in PARALAGG
is largely orthogonal to this work, inspired more closely by
the notion of communication-avoiding algorithms [54].

High-Performance Aggregate Queries: Our work focuses
on the implementation of general-purpose relational algebra
kernels to enable the rapid implementation of a broad class of
problems. However, a wide body of work exploits problem (or
hardware)-specific knowledge to scale the implementation of
SSSP [55]–[59], connected components [60], union-find [61].
These tools focus solely on graph processing and do not
support recursive aggregation and other relational algebra
operations. Hence, in this paper our evaluation specifically
targeted the best publicly-available declarative engines (Rad-
Log, SociaLite, and BigDatalog). As future work, we hope to
study how these application-specific insights may be applied
to further scale programs written using PARALAGG.

VII. CONCLUSION

Recursive aggregation is a highly useful extension to stan-
dard reachability-based reasoning, forming the basis for many
important problems which interpose monotonic aggregation
with chain-forward reasoning. Unfortunately, the challenge of
mixing semi-naı̈ve evaluation with a distributed tuple repre-
sentation poses serious challenges to scalability of recursive
aggregates in a high performance setting, where the need for
communication often hampers end-to-end throughput. For ex-
ample, while several significant efforts to implement recursive
aggregates have focused on distributed architectures [2]–[4],
[62], the fastest current methods utilize unified machines with
shared memory [1].

In this paper, we present the design of communication-
avoiding algorithms to implement recursive aggregates at a
scale never before seen. We leverage the observation that
the semantic properties justifying well-founded recursive ag-
gregation (e.g., PreM) are of a restricted form which al-
low communication-avoiding implementations of recursive
aggregates in a highly-parallel way (via local aggregation).
We present PARALAGG, a C++ library which offers high-
performance relational algebra kernels extended with recursive
aggregates. Additionally, we present a new approach to on-
the-fly join layout based on domain-specific communication
issues. We demonstrate how PARALAGG approach allows
expressing common recursive aggregate queries, and run a
variety of experiments on mid-size servers and leadership-class
supercomputers. Our results show that PARALAGG outper-
forms comparable state-of-the-art tools, demonstrating healthy
scalability to tens of thousands of cores of the Theta su-
percomputer, and validating the usefulness of our heuristic-
based dynamic join layout algorithm in applying recursive
aggregation to large graphs.

VIII. ACKNOWLEDGEMENT

This work was funded in part by NSF RII Track-4 award
2132013, NSF PPoSS planning award 2217036, NSF PPoSS
large award 2316157 and, NSF collaborative research award

2221811. We are thankful to the ALCF’s Director’s Discre-
tionary (DD) program for providing us with compute hours
to run our experiments on the Theta supercomputer located at
the Argonne National Laboratory. This material is based upon
work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. N66001-21-C-4023.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of DARPA.

REFERENCES

[1] J. Wu, J. Wang, and C. Zaniolo, “Optimizing parallel recursive datalog
evaluation on multicore machines,” in Proceedings of the 2022 Interna-
tional Conference on Management of Data, pp. 1433–1446, 2022.

[2] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zan-
iolo, “Big data analytics with datalog queries on spark,” in Proceedings
of the 2016 International Conference on Management of Data, pp. 1135–
1149, 2016.

[3] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang, L. Ding,
and C. Zaniolo, “Rasql: Greater power and performance for big data
analytics with recursive-aggregate-sql on spark,” in Proceedings of the
2019 International Conference on Management of Data, pp. 467–484.

[4] M. Mazuran, E. Serra, and C. Zaniolo, “Extending the power of datalog
recursion,” The VLDB Journal, vol. 22, no. 4, pp. 471–493, 2013.

[5] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, dec 2011.

[6] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, 1989.

[7] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in Computer Aided Verification: 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II 28, pp. 422–430, Springer, 2016.

[8] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn, “Design and implementation of
the logicblox system,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, (New
York, NY, USA), p. 1371–1382, Association for Computing Machinery.

[9] I. S. Mumick and O. Shmueli, “How expressive is stratified aggre-
gation?,” Annals of Mathematics and Artificial Intelligence, vol. 15,
pp. 407–435, 1995.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, p. 269–271, 1959.

[11] K. A. Ross and Y. Sagiv, “Monotonic aggregation in deductive
databases,” Journal of Computer and System Sciences, vol. 54, no. 1,
pp. 79–97, 1997.

[12] K. A. Ross and Y. Sagiv, “Monotonic Aggregation in Deductive
Databases,” in Proceedings of the eleventh ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 114–126,
1992.

[13] S. Kumar and T. Gilray, “Load-balancing parallel relational algebra,”
in High Performance Computing: 35th International Conference, ISC
High Performance 2020, Frankfurt/Main, Germany, June 22–25, 2020,
Proceedings, (Berlin, Heidelberg), p. 288–308, Springer-Verlag, 2020.

[14] S. Kumar and T. Gilray, “Distributed relational algebra at scale,” in
International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, vol. 1, 2019.

[15] J.-P. Cheiney and C. de Maindreville, “A parallel strategy for transitive
closure usind double hash-based clustering.,” in VLDB, pp. 347–358,
1990.

[16] K. Fan, T. Gilray, V. Pascucci, X. Huang, K. Micinski, and S. Kumar,
“Optimizing the bruck algorithm for non-uniform all-to-all communica-
tion,” in Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, HPDC ’22, (New
York, NY, USA), p. 172–184, Association for Computing Machinery.

[17] N. Netterville, K. Fan, S. Kumar, and T. Gilray, “A visual guide
to mpi all-to-all,” in 2022 IEEE 29th International Conference on
High Performance Computing, Data and Analytics Workshop (HiPCW),
pp. 20–27, 2022.

[18] C. Zaniolo, M. Yang, A. Das, A. Shkapsky, T. Condie, and M. Interlandi,
“Fixpoint semantics and optimization of recursive datalog programs with
aggregates,” Theory and Practice of Logic Programming, vol. 17, no. 5-
6, pp. 1048–1065, 2017.

[19] J. Wang, J. Wu, M. Li, J. Gu, A. Das, and C. Zaniolo, “Formal semantics
and high performance in declarative machine learning using datalog,”
VLDB J., vol. 30, no. 5, pp. 859–881, 2021.

[20] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: A datalog-
based language for large-scale graph analysis,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1906–1917, 2013.

[21] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, 2 ed., 2002.

[22] A. L. C. Facility, “Theta’ overview and user manual.” https://www.alcf.
anl.gov/support/user-guides/index.html.

[23] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” in Proceedings of the 19th international
conference on World wide web, pp. 591–600, 2010.

[24] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data, June 2014.

[25] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining,
pp. 555–564, 2017.

[26] M. Madsen, M.-H. Yee, and O. Lhoták, “From datalog to flix: A declar-
ative language for fixed points on lattices,” ACM SIGPLAN Notices,
vol. 51, no. 6, pp. 194–208, 2016.

[27] M. A. Khamis, H. Q. Ngo, R. Pichler, D. Suciu, and Y. Remy Wang,
“Datalog in wonderland,” SIGMOD Rec., vol. 51, p. 6–17, jul 2022.

[28] M. Arntzenius and N. R. Krishnaswami, “Datafun: a functional datalog,”
in Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, pp. 214–227, 2016.

[29] S. Ganguly, S. Greco, and C. Zaniolo, “Minimum and maximum
predicates in logic programming,” in Proceedings of the Tenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, PODS ’91, (New York, NY, USA), p. 154–163, Association for
Computing Machinery, 1991.

[30] J. Wang, G. Xiao, J. Gu, J. Wu, and C. Zaniolo, “Rasql: A powerful
language and its system for big data applications,” in Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’20, (New York, NY, USA), p. 2673–2676, Association
for Computing Machinery, 2020.

[31] R. Krishnamurthy and S. A. Naqvi, “Non-deterministic choice in data-
log,” in International Conference on Data and Knowledge Bases, 1988.

[32] T. Condie, A. Das, M. Interlandi, A. Shkapsky, M. Yang, and C. Zaniolo,
“Scaling-up reasoning and advanced analytics on bigdata,” Theory and
Practice of Logic Programming, vol. 18, no. 5-6, p. 806–845, 2018.

[33] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in Proceedings of the 24th ACM SIG-
PLAN conference on Object oriented programming systems languages
and applications, pp. 243–262, 2009.

[34] J. Whaley, D. Avots, M. Carbin, and M. S. Lam, “Using datalog
with binary decision diagrams for program analysis,” in Programming
Languages and Systems (K. Yi, ed.), (Berlin, Heidelberg), pp. 97–118,
Springer Berlin Heidelberg, 2005.

[35] T. Antoniadis, K. Triantafyllou, and Y. Smaragdakis, “Porting doop to
soufflé: A tale of inter-engine portability for datalog-based analyses,” in
Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis, SOAP 2017, (New York, NY, USA),
p. 25–30, Association for Computing Machinery, 2017.

[36] W. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch, “Datalog-
raphy: Scaling datalog graph analytics on graph processing systems,”
in 2016 IEEE International Conference on Big Data (Big Data), (Los
Alamitos, CA, USA), pp. 56–65, IEEE Computer Society, dec 2016.

[37] Z. Fan, J. Zhu, Z. Zhang, A. Albarghouthi, P. Koutris, and J. M.
Patel, “Scaling-up in-memory datalog processing: Observations and
techniques,” Proceedings of the VLDB Endowment, vol. 12, no. 6, 2019.

[38] H. Jordan, P. Subotić, D. Zhao, and B. Scholz, “Brie: A specialized
trie for concurrent datalog,” in Proceedings of the 10th International
Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM’19, (New York, NY, USA), p. 31–40, Association
for Computing Machinery, 2019.

[39] P. Nappa, D. Zhao, P. Subotić, and B. Scholz, “Fast parallel equivalence
relations in a datalog compiler,” in 28th International Conference on
Parallel Architectures and Compilation Techniques, pp. 82–96, 2019.

https://www.alcf.anl.gov/support/user-guides/index.html
https://www.alcf.anl.gov/support/user-guides/index.html
http://snap.stanford.edu/data

[40] M. Imran, G. E. Gévay, and V. Markl, “Distributed graph analytics with
datalog queries in flink,” in Software Foundations for Data Interop-
erability and Large Scale Graph Data Analytics (L. Qin, W. Zhang,
Y. Zhang, Y. Peng, H. Kato, W. Wang, and C. Xiao, eds.), (Cham),
pp. 70–83, Springer International Publishing, 2020.

[41] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between hpc and big data
frameworks,” Proc. VLDB Endow., vol. 10, p. 901–912, apr 2017.

[42] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in
the cloud: Spark on hadoop vs mpi/openmp on beowulf,” Procedia
Computer Science, vol. 53, pp. 121–130, 2015. INNS Conference on
Big Data 2015 Program San Francisco, CA, USA 8-10 August 2015.

[43] A. R. Shovon, T. Gilray, K. Micinski, and S. Kumar, “Towards iterative
relational algebra on the {GPU},” in 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pp. 1009–1016, 2023.

[44] A. R. Shovon, L. R. Dyken, O. Green, T. Gilray, and S. Kumar, “Accel-
erating datalog applications with cudf,” in 2022 IEEE/ACM Workshop on
Irregular Applications: Architectures and Algorithms (IA3), pp. 41–45,
IEEE, 2022.

[45] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases: the
logical level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[46] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimization of nonre-
cursive queries.,” in VLDB, vol. 86, pp. 128–137, 1986.

[47] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pp. 23–34, 1979.

[48] S. Cluet and G. Moerkotte, “On the complexity of generating optimal
left-deep processing trees with cross products,” in Database The-
ory—ICDT’95: 5th International Conference Prague, Czech Republic,
January 11–13, 1995 Proceedings 5, pp. 54–67, Springer, 1995.

[49] W. Cai, M. Balazinska, and D. Suciu, “Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities,” in Proceedings
of the 2019 International Conference on Management of Data, SIGMOD
’19, (New York, NY, USA), p. 18–35, Association for Computing
Machinery, 2019.

[50] T. Ibaraki and T. Kameda, “On the optimal nesting order for computing
n-relational joins,” ACM Transactions on Database Systems (TODS),
vol. 9, no. 3, pp. 482–502, 1984.

[51] T. Neumann and B. Radke, “Adaptive optimization of very large join
queries,” in Proceedings of the 2018 International Conference on
Management of Data, pp. 677–692, 2018.

[52] R. Mancini, S. Karthik, B. Chandra, V. Mageirakos, and A. Ailamaki,
“Efficient massively parallel join optimization for large queries,” in
Proceedings of the 2022 International Conference on Management of
Data, SIGMOD ’22, (New York, NY, USA), p. 122–135, Association
for Computing Machinery, 2022.

[53] S. Arch, X. Hu, D. Zhao, P. Subotić, and B. Scholz, “Building a
join optimizer for soufflé,” in Logic-Based Program Synthesis and
Transformation: 32nd International Symposium, LOPSTR 2022, Tbilisi,
Georgia, September 21–23, Proceedings, pp. 83–102, Springer, 2022.

[54] J. Demmel, “Communication-avoiding algorithms for linear algebra and
beyond,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pp. 585–585, 2013.

[55] X. Gan, Y. Zhang, R. Wang, T. Li, T. Xiao, R. Zeng, J. Liu, and
K. Lu, “Tianhegraph: Customizing graph search for graph500 on tianhe
supercomputer,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, pp. 941–951, 2022.

[56] Y. Wang, H. Cao, Z. Ma, W. Yin, and W. Chen, “Scaling graph 500 sssp
to 140 trillion edges with over 40 million cores,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’22, IEEE Press, 2022.

[57] Y. Zhang, X. Liao, H. Jin, L. He, B. He, H. Liu, and L. Gu, “Depgraph:
A dependency-driven accelerator for efficient iterative graph processing,”
in 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 371–384, 2021.

[58] F. Checconi and F. Petrini, “Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 425–
434, 2014.

[59] V. T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal, “Scalable
single source shortest path algorithms for massively parallel systems,”
in 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 889–901, 2014.

[60] Y. Zhang, A. Azad, and A. Buluç, “Parallel algorithms for finding
connected components using linear algebra,” Journal of Parallel and
Distributed Computing, vol. 144, pp. 14–27, 2020.

[61] F. Manne and M. M. A. Patwary, “A scalable parallel union-find
algorithm for distributed memory computers,” in Parallel Processing and
Applied Mathematics (R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Wasniewski, eds.), (Berlin, Heidelberg), pp. 186–195, Springer Berlin
Heidelberg, 2010.

[62] M. Imran, G. E. Gévay, J.-A. Quiané-Ruiz, and V. Markl, “Fast datalog
evaluation for batch and stream graph processing,” World Wide Web,
vol. 25, no. 2, pp. 971–1003, 2022.

	Introduction
	Background
	Relational Algebra
	Stratified Aggregation
	Recursive Aggregation
	Parallel Relational Algebra

	Recursive Aggregation: With and without Communication
	Communication-Avoiding Local Aggregation

	Implementation
	Data Distribution
	API and C++ implementation
	Spatial Load Balancing
	Communication-Avoiding Join Layout

	Evaluation
	Queries
	RQ1: Measuring the Effects of our Optimizations
	RQ2: Comparisons against SOTA systems on large servers
	RQ3: Scaling on Theta

	Related Work
	Conclusion
	Acknowledgement
	References

