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Abstract—Relational algebra forms a basis of primitive opera-
tions suitable for applications in graphs and networks, program
analysis, deductive databases, and constraint logic programming.
Despite its expressive power, relational algebra has not received
the same attention in high-performance-computing research as
more common primitives like stencil computations, floating-point
operations, numerical integration, and sparse linear algebra.
Furthermore, specific challenges in addressing representation
and communication among distributed portions of a relation,
especially for inherently imbalanced relations, have previously
thwarted successful scaling of relational algebra applications to
supercomputers.

In this paper, we present a set of efficient algorithms to effec-
tively parallelize and scale key relational algebra primitives. We
introduce a hybrid hash-tree approach to representing distributed
imbalanced relations and permitting efficient communication.
Finally, we demonstrate the scalability of our implementation
with a fixed-point algorithm computing the transitive closure
of a large graph (generating over 276 billion edges) on 32,768
processes.

Index Terms—Relation, Relational Algebra, Logic, Graph
Algorithms, Transitive Closure, All to All Communication

I. INTRODUCTION

Implementing application-specific code on supercomputers

requires addressing the fundamental underlying primitives of

an algorithm in a way that is flexible and scalable. Significant

progress has been made on a wide variety of important

problems due to a rigorous exploration of high-performance

primitives such as stencil computations, floating-point arith-

metic, numerical integration, and sparse linear algebra.

Relational algebra is a crucial primitive for a wide range

of analytic problems in graphs, machine learning, logic pro-

gramming, program analysis, deductive databases, and formal

verification, that has been the subject of great interest in

the literature [10], [11], [21], [22], [27], [29], but has had

limited exploration on supercomputers, and at scale. Three

central barriers to scaling operations on relations, such as

union, selection, projection, and join, have been (a) how to

represent distributed relations in a way that is amenable to

efficient parallel operations, (b) how to handle communication

to coordinate distinct portions of the distributed workload, and

(c) how to handle inherent imbalance (key skew) in distributed

relations, and dynamic changes in imbalance over time.

While some progress has been made in addressing these

issues, (a) in particular [5], [8], [19], [25], no approach has

yet provided a general framework that makes applications

using a pipeline of repeated operations on relations—for fixed-

point iteration, supporting applications such as Datalog and

program analysis—possible at scale. For such applications to

be implemented on distributed, many-core systems, existing

algorithms (e.g., [5]) that distribute relations among available

cores, perform a single operation, and return in map-reduce

fashion, are not suitable as repeated operations require efficient

granular communication at each step.

In this paper, we present a hybrid approach to representing

relations on networked machines and performing efficient

distributed operations on them, building on the current state

of the art for single-node parallelism. Interestingly, in address-

ing the communication issue, we find that MPI’s all-to-all

communication paradigm suits relational algebra best. Today’s

supercomputers have specialized, high speed interconnects and

data can be transmitted between processes with very low

latency. When used with an appropriate configuration, all-to-

all communication—known to be the most intensive mode of

communication—can scale well.

A. Contributions

In particular, we make the following specific contributions

to the literature:

1) We present a novel hybrid hash-tree based representation

and its algorithms for distributed relational algebra.

2) We present a scalable implementation for a fixed-point

algorithm employing distributed relational algebra: com-

puting the transitive closure of a graph.

3) We present a balanced hash-tree based join algorithm to

mitigate load-balance issues associated with inherently

imbalanced (key-skewed) relations.

4) We demonstrate scalability of transitive closure up to

32,768 processes, producing a graph with more than

276 billion edges. To the best of our knowledge, this

is the largest transitive closure operation discussed in the

literature.

We understand our implementation to be the first truly

scalable distributed relational algebra that addresses inter-

process communication and load balancing, permitting fixed-

point iteration, and laying the foundation for solving massive

logical inference problems, graph problems, and more, on

supercomputers.

II. RELATIONAL ALGEBRA

This section reviews the standard relational operations

union, product, intersection, natural join, selection, renaming,
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and projection, along with their use in implementing two

closely related example applications: graph problems and

bottom-up Datalog solvers.

A. Standard RA Operations

We make some standard assumptions about relational alge-

bra that differ from those of traditional set operations. Specif-

ically, we assume that all our relations are sets of flat (first-

order) tuples of natural numbers with a fixed, homogeneous

arity. This means that the relation (N × N) × N contains the

tuple (1, 2, 3), and not ((1, 2), 3). Further, in operations like

union or intersection, both relations must be union-compatible

by having the same arity and columns. Although our approach

extends naturally to relations over arbitrary enumerable do-

mains (such as integers, booleans, symbols/strings, lists of

integers, etc), we also make the assumption that such values

are interned and assigned an integer identity. Though many

RA operations exist, several others are especially standard:

a) Cartesian product: The product of two relations R
and S is defined:

R× S � {(r0, . . . , rk, s0, . . . , sj) | (r0, . . . , rk) ∈ R

∧ (s0, . . . , sj) ∈ S}.
b) Union: The union of two relations R and R′ may

only be performed if both relations have the same arity but is

otherwise set union:

R ∪R′ � {(r0, . . . , rk) | (r0, . . . , rk) ∈ R

∨ (r0, . . . , rk) ∈ R′}.
c) Intersection: The intersection of two relations R and

R′ may only be performed if both have k arity but is otherwise

set intersection:

R ∩R′ � {(r0, . . . , rk) | (r0, . . . , rk) ∈ R

∧ (r0, . . . , rk) ∈ R′}.
d) Projection: Projection is a unary operation that re-

moves a column or columns from a relation—and thus any

duplicate tuples that result from removing these columns.

Projection of a relation R restricts R to a particular set of

dimensions α0, . . . , αj , where α0 < . . . < αj , and is written

Πα0,...,αj
(R). For each tuple, projection retains only stated

columns: Πα0,...,αj
(R) � {(rα0

, . . . , rαj
) | (r0, . . . , rk) ∈ R}.

e) Renaming: Renaming is a unary operation that re-

names (i.e., reorders) columns. Renaming columns can be

defined in several different ways, including renaming all

columns at once. We define our renaming operator, ραi/αj
(R),

to swap two columns, αi and αj where αi < αj—an operation

that can be repeated to rename/reorder as many columns as

desired: ραi/αj
(R) � {(. . . , rαj , . . . , rαi , . . .)

| (. . . , rαi , . . . , rαj , . . .) ∈ R}.
f) Selection: Selection is a unary operation that restricts

a relation to tuples where a particular column matches a

particular value. As with renaming, a selection operator may

alternatively be defined to allow multiple columns to be

matched at once, or to allow inequality or other predicates to

be used in matching tuples. In our formulation, selection on

multiple columns can be accomplished by repeated selection

on a single column at a time. Selecting just those tuples from

relation R where column αi matches a value v is defined:

σαi=v(R) � {(rα0
, . . . , rαk

) ∈ R | rαi
= v}.

Selecting just those tuples from relation R where the values

in columns αi and αj must match is defined:

σαi=αj
(R) � {(rα0

, . . . , rαk
) ∈ R | rαi

= rαj
}.

g) Natural Join: Two relations can also be joined into

one on a subset of columns they have in common. Join

combines two relations into one, where a subset of columns

are required to have matching values, and generalizes both

intersection and Cartesian product operations.

Consider an example of two tables in a database, one that

encodes a system’s users’ emails (including their username,

email address, and whether it’s verified) and another that en-

codes successful logins (including a username, timestamp,

and ip address):

emails
username email verified
samp samwow@gmail.com 1
samp samp9@uab.edu 0
lee lee5@uab.edu 1

logins
username time ipaddr
samp 1554291414 162.103.150.12
lee 1554181337 171.31.15.120
lee 1554219962 155.28.11.102
lee 1554133720 171.31.15.120

A join operation on these two relations, written emails ��
logins, yields a single relation with all five columns: user-

name, email, verified, timestamp, address. For columns the two

relations have in common, the natural join only considers pairs

of tuples from the two input relations where the values for

those columns match, as in an intersection operation; for other

columns, the natural join computes all possible combinations

of their values as in Cartesian product. If both input relations

share all columns in common, a join is simply intersection and

if both input relations share no columns in common, a join is

simply Cartesian product. In this case, we have:

emails �� logins
username email verified time ipaddr
samp samwow@. . . 1 . . .414 162. . .

samp samp9@. . . 0 . . .414 162. . .

lee lee5@. . . 1 . . .337 171. . .

lee lee5@. . . 1 . . .962 155. . .

lee lee5@. . . 1 . . .720 171. . .

For example, if we wanted to compute all email addresses

and ip addresses that may be associated, we could compute

the join of these two relations and then project the join

down to these two attributes alone. Note that four (not five)

rows result, as one becomes a duplicate after projection, in:

Πemail,ipaddr(emails �� logins)
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Fig. 1: Each iteration of computing transitive closure for a small example.

Πemail,ipaddr(emails �� logins)
email ipaddr

samwow@gmail.com 162.103.150.12
samp9@uab.edu 162.103.150.12
lee5@uab.edu 171.31.15.120
lee5@uab.edu 155.28.11.102

In this example, we’ve shown relations with associ-

ated attribute (column) names (e.g., email, ipaddr). In

our formalization of relations, we treat columns as or-

dered and identified by their index instead—naturally a pro-

gramming model, RDBMS, or API for relations will as-

sociate these indices with their symbolic names. As for-

malized, the emails relation could be a set of tuples

Remails = {(0, 0, 1), (0, 1, 0), (1, 2, 1)}, where the attributes

username, email, and verified are stored in columns

0, 1, and 2, respectively, the string “samp” is interned as

username 0, the string “lee” is interned as username 1, and

the three emails are interned as emails 0, 1, and 2. This is to

say, although we treat relations exclusively as sets of tuples of

integers in this paper, doing so is no meaningful restriction as

databases and logic solvers add interning systems and schema

to support other values and string-based names for columns.

To formalize natural join as an operation on such a relation,

we parameterize it by the number of indices that must match,

assumed to be the first j of each relation (if they are not, a

renaming operation must come first). The join of relations R
and S on the first j columns is written R ��j S and defined:

R ��j S � { (r0, . . . , rk, sj , . . . , sm)

| (. . . , rk) ∈ R ∧ (. . . , sm) ∈ S ∧
∧

i=0..j−1

ri = si }

B. Application: Transitive Closure

One of the simplest common algorithms that may be imple-

mented efficiently as a loop over high-performance relational

algebra primitives, is computing the transitive closure (TC) of

a relation or graph. Consider a relation G ⊆ N
2 encoding a

graph where each point (a, b) ∈ G encodes the existence of

an edge from vertex a to vertex b.
For example, consider graph G (on the left in Figure 1)

where G = {(0, 1), (1, 3), (0, 2), (2, 3), (3, 4)}. Renaming to

swap the columns of G, results in a graph, ρ0/1(G), where

all arrows are reversed in direction. If this graph is joined

with G on only the first column (meaning G is joined

on its second columns with G on its first column), via

ρ0/1(G) ��1 G, we get a set of triples (b, a, c)—specifically

{(1, 0, 3), (2, 0, 3), (3, 1, 4), (3, 2, 4)}—representing paths of

length two in the original graph where a leads to b which

leads to c. Projecting out the first column with Π1,2(. . .) yields

pairs (a, c) encoding paths of length two from a to c in the

original graph G. If we compute the union of this graph with

the original G, we obtain a relation encoding paths of length

one or two in G. This graph, G ∪ Π1,2(ρ0/1(G) ��1 G), is

second in Figure 1 with new edges shown in dashes.

We can encapsulate this step in a function FG which takes a

relation T , encoding a graph, and returns the graph G unioned

with T ’s edges extended with G’s edges.

FG(T ) � G ∪Π1,2(ρ0/1(T ) ��1 G)

The second graph shown can be produced by FG(G) and

the graph G is returned if the input graph T is empty, as in

FG(⊥). If FG is repeatedly applied, each result encodes ever

longer paths through G, as shown. In this case for example, the

graph FG(FG(G)) or FG
3(⊥) encodes the transitive closure

of G—all paths in G reified as edges. One final iteration is

required to check that the process reached a fixed point.

In the general case, for any graph G, there exists some n ∈
N such that FG

n(⊥) encodes the transitive closure of G. The

transitive closure may be computed by repeatedly applying FG

in a loop until reaching an n where FG
n(⊥) = FG

n−1(⊥) in

a process of fixed-point iteration. In the first iteration, paths

of length one are computed; in the second, paths of length

one or two are computed, and so forth. After the longest path

in G is found, just one additional iteration is necessary as a

fixed-point check to confirm that the final graph has stabilized.

C. Application: Datalog

Computing transitive closure is a simple example of logical

inference. From paths of length zero (an empty graph) and

the existence of edges in graph G, we may trivially deduce

the existence of paths of length 0 . . . 1. From paths of length

0 . . . n and the original edges in graph G, we may deduce the

existence of paths of length 0 . . . n+1. The function FG above

performs a single round of inference, finding paths one edge

longer than any found previously and exposing new deductions

for the next iteration of FG to make. When the computation

reaches a fixed point, the solution has been found as no further

paths may be deduced from the available facts.
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In fact, the function FG is a quite-immediate encoding in

relational algebra of a variant of the transitivity property itself,

T (a, c)⇐= G(a, c) ∨ T (a, b) ∧G(b, c),

a logical constraint for which we desire a least solution. T
satisfies this property exactly when T is a fixed-point for FG.

Solving logical and constraint problems in this way is pre-

cisely the strategy of bottom-up logic programming. Bottom-

up logic programming begins with a set of facts (such as

T (a, b)—the existence of an edge in a graph T ) and a set

of inference rules and performs a least-fixed-point calculation,

accumulating new facts that are immediately derivable, until

reaching a minimal set of facts consistent with all rules.

Datalog is a bottom-up logic programming language

supporting a restricted logic corresponding to first-order

HornSAT—the satisfiability problem for conjunctions of Horn

clauses [3]. A Horn clause is a disjunction of atoms where

all but one is negated: a0 ∨ ¬a1 ∨ . . . ∨ ¬aj . By DeMorgan’s

laws we may rewrite this as a0∨¬(a1∧ . . .∧aj) and note that

this is an implication: a0 ← a1 ∧ . . .∧ aj . In first-order logic,

atoms are predicates with universally quantified variables.

A Datalog program is a set of rules P (x0, . . . , xk) ←
Q(y0, . . . , yj)∧ . . .∧S(z0, . . . , zm) and its input is a database

of facts called the extensional database (EDB). Running the

datalog program reifies the intensional database (IDB) which

extends facts from the EDB with all facts transitively derivable

via the program’s rules. In typical Datalog notation, computing

transitive closure of a graph is accomplished with two rules:

T(x,y) <- G(x,y).
T(x,z) <- T(x,y), G(y,z).

The first rule says that any edge, in G, implies a path, in

T (taking the role of the left operand of union in FG or the

left disjunct in our implication), and the second rule says that

any path (x, y) and edge (y, z) imply a path (x, z) (adding

edges for the right operand of union in FG). Other kinds

of graph mining problems, such as computing triangles, can

also be naturally implemented as Datalog programs [26]. Our

motivation for developing distributed RA is as a back-end for

an expressive Datalog-like logic programming language.

D. Implementation approaches

In our previous discussion of both transitive closure and

Datalog, we have elided important optimizations and imple-

mentation details in favor of focusing on the main ideas

of both. In practice, it is inefficient to perform multiple

granular RA operations separately to perform a selection,

reorder columns, join relations, project out unneeded columns,

reorder columns again, etc, when iteration overhead can be

eliminated and cache coherence improved by performing loop

fusion. In practice, high-performance Datalog solvers perform

all necessary steps at once, supporting a generalization of the

operations we have discussed that can join, select, reorder

variables, project, and union, all at once. In a Datalog engine,

this fusion may be accomplished automatically by applying

Futamura’s projection to a relational abstract machine seman-

tics [21].
In addition, both transitive closure, and Datalog generally, as

presented above, are using naı̈ve fixed-point iteration, recom-

puting all previously discovered edges (resp. facts) at every

iteration. Efficient implementations are incrementalized, only

considering facts that can be extended to produce previously

undiscovered facts. For example, when computing transitive

closure, another relation TΔ is used which only stores the

longest paths—those discovered in the previous iteration.

When computing paths of length n, in fixed-point iteration

n, only new paths discovered in the previous iteration, paths

of length n − 1, need to be considered as shorter paths

extended with edges from G yield paths which must have

been discovered already. In Datalog and database theory, this

optimization is known as semi-naı̈ve evaluation [3].
Consider the second Datalog rule implementing transitive

closure, discussed previously, defining paths in terms of paths

and edges. Each iteration of our function F for this rule can

be implemented as the following pseudocode:

new_T = {}
for [x,y] in delta_T.select_all():

for [y,z] in total_G.select("y", y):
if total_T.has_key([x,z]) == false:

if delta_T.has_key([x,z]) == false:
new_T.insert([x,z])

for [x,y] in delta_T.select_all():
total_T.insert([x,y])

delta_T = new_T

III. DISTRIBUTED RELATIONAL ALGEBRA

This section discusses our implementation of distributed

relational algebra. We first synthesize a small increment from

the current state of the art: a hybrid approach we call hash-
tree relational algebra. This consists of nesting B-trees within

a hash-table that can be partitioned across multiple MPI

processes. In a typical join, it will be necessary to iterate over

all tuples where particular columns match a value or values

taken from the first operand of join—in which case the variable

being matched should come first and be a key in the outermost

B-tree. The relation is thus explicitly indexed on this column.
In our implementation, a relation R(a, b) indexed on join-

variable a is encapsulated using a type Rel<Rel<void>>
which provides an interface to a B-tree mapping uint64_t
keys, storing each a, mapped to subrelations over just those

values b that are paired with a particular a. In our distributed

hash-tree approach, this nesting of B-trees is extended at the

top-level by a distributed hash table so that each value a is

also hashed to assign its tuple to one of nproc (the number of

MPI processes hosting the relation) buckets that are distributed

across available MPI processes.
By contrast with the double-hashing approach of nesting

hash tables within a distributed hash table, use of B-trees

carries several advantages. They are faster at unstructured in-

sertions overall and dynamically expand in non-amortized log-

time while hash tables dynamically expand only in amortized
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log-time and suffer slowdowns in practice at scale. In addition

to being slower in isolation, the higher worst-case complexity

of hash-tables leads to complications in a distributed setting

where a single inner, per-bucket table (on one processes)

resizes, delaying a synchronized communication phase for

all processes. The state-of-the-art Datalog solver Soufflé also

demonstrates the relative performance of tree-structures (using

B-trees and prefix-trees) [21] and shows that tree structures

permit indices to be shared optimally permitting a full order-

of-magnitude speedup in a static program analysis task [23].

The standard way to parallelize the key-value store approach

to relational algebra on multi-core systems is to partition

the iteration space of the outermost loop. For example, the

Soufflé uses OpenMP to parallelize its join operations, first

partitioning the outermost key-value store into multiple dis-

joint iterators—one for each available thread. Soufflè’s join

algorithm is nearly identical to our previous pseudocode for

join, except that it adds an outer parallel for loop.

A. Hash-tree relations

Our hybrid hash-tree representation for relations makes its

parallelism explicit as physically separate partitions of the total

relations are stored in distinct hash-table buckets—each owned

by a single MPI process. Join operations then decompose

into a separate join for each bucket, followed by hashing of

output tuples, and a communication phase to insert these tuples

into the output relation. In experiments designing our join

operation, we found that, as hashing distributes keys evenly

across buckets (although not necessarily tuples), MPI’s all-

to-all communication paradigm was actually most efficient

for inserting output tuples in their receiving buckets (i.e., on

processes hosting the output relation).

Projection
(deduplication)

Hashing

T Join G

All to all comm
(MPI_ All_to_Allv)

Local join
G

G

G

T

T

T

Rank 0

Rank 1

Rank 2

Fig. 2: Diagram showing different phases of hash-tree join.

In Figure 2 we show the process for computing a single

iteration of a distributed TC computation. T (i.e., TΔ as we

implement incrementalized TC) is joined with G on a per-

bucket basis (the diagram shows three buckets). Tuples in

T (x, y) are indexed on the second column (y) and tuples in

G(y, z) are indexed on the first column (y). This makes it

possible to perform local (intra-bucket) joins as each tuple

(x, y) ∈ T is guaranteed to have all matching tuples (y, z) ∈ G
stored in the same bucket, managed by the same MPI process.

Each resulting triple (x, y, z) has its middle column projected

out on-the-fly as it is produced, and, as the resulting tuple

(x, z) must be inserted into T , a relation indexed on its second

column, each new edge is hashed and assigned to bucket

hash(x) modulo nprocs in the output relation (T , TΔ).

Our design requires distinct versions of a relation (e.g., T ,

TΔ) are co-located on MPI processes via an identical bucket

decomposition. In addition, this bucket for T and TΔ will

not generally be managed by the local MPI process, so a

communication phase is required to actually perform insertion

of each output tuple in its output relation. As each output

tuple is produced, it is staged in one of nprocs packets, ready

to be sent across the network to the MPI process managing

its bucket. Finally, an all-to-all communication phase is used

to reorganize the output of the join operation—preparing T
for subsequent fixed-point iterations. As tuples are received

by their host process, they are inserted into the local B-tree

structure, eliminating duplicates. This final insertion of tuples

into an extant relation, without removing any existing tuples,

performs the union required in our implementation of FG from

section II. As T and TΔ are co-located across processes, no

communication is needed to perform final insertion—if a tuple

is in T it is not locally inserted into TΔ, otherwise it is.

B. Balanced hash-tree relations

A crucial complication remains that, so far, has been only

alluded to: although hashing on join columns distributes those

keys uniformly across buckets, a single key can have many

more tuples than another. This is to say, some relations are

inherently highly imbalanced. Consider a graph with a million

vertices, most with at-most one outgoing edge, but a single

vertex has nearly a million outgoing edges of its own.

In our hash-tree approach as described, the vertex with many

edges is mapped to a single heavy bucket that contains most of

the relation. Each operation then runs as slow as the slowest

bucket, which will be our heavy bucket—if it is even able

to store so much of the overall relation in the first place.

To distribute such a relation effectively, it is necessary to

disproportionately allocate compute resources.

T Join G

G

G

G

T

T

T

G

G

G

Tbuffer

Tbuffer

Tbuffer

Projection
(deduplication)

Hashing

All to all comm
(MPI_ All_to_Allv)

Local joinIntra-bucket comm

Rank 0

Rank 1

Rank 2

Fig. 3: Diagram showing phases of balanced-hash-tree join.

To address this issue, we develop a balanced-hash-tree
approach: we partition each relation into buckets, and each

16



bucket into subbuckets, assigning a tuple to its bucket by

hashing its key (set of join columns) and to its subbucket

by hashing over the full tuple so there is uniform distribution

of tuples in a bucket to subbuckets. Then, as the number of

subbuckets per bucket may be heterogenous (this is the whole

point of introducing subbuckets), we require a strategy for

mapping subbuckets onto processes.

Figure 3 shows the phases of a balanced-hash-tree join.

First, an intra-bucket communication phase is required. The

example shows T balanced with three buckets, and one sub-

bucket per bucket, and G balanced with 2, 2, and 1 subbuckets

per bucket respectively. No longer is there an immediate 1-1

mapping between buckets and MPI ranks; each subbucket is

mapped to some process (in this diagram, using a round-robin

approach). The green-keyed bucket of T transmits its tuples

to both subbuckets (hosted on ranks 1 and 2) as either could

contain matching tuples in G. The yellow-keyed bucket of T

transmits its tuples to both yellow subbuckets of G (hosted

on ranks 3 and 1). The purple-keyed bucket of T transmits its

tuples to the one purple subbucket of G (hosted on rank 2).

In an (imbalanced) hash-tree join, newly inserted tuples

from the last join arrive in buckets for TΔ, keyed on their

second column, and are then immediately available on that

same process this iteration to be joined with tuples in G (keyed

on their first column). Now, however, the subbucket for TΔ’s

new tuple, say (14, 6), may not be the subbucket containing a

tuple in G, say (6, 11), which should join with it. This means

all subbuckets for TΔ must first transmit all their tuples to

all subbuckets in the same bucket to be joined with tuples in

G. As this is always a delta relation—it is not being strictly

accumulated and these copies last only the current iteration.

Next, the join continues as before, except in terms of

subbucket partitioning instead of bucket partitioning. Each

subbucket computes a local join, hashes the resulting tuples to

determine the bucket and subbucket it belongs to, identifies the

process owning this subbucket, and transmits the tuple during

the global communication phase.

1) Mapping subbuckets to processes: We implement two

strategies for mapping subbuckets to processes, a round-robin
approach and a hashing approach. The round robin approach

uses communication to synchronize a map maintained on every

process from bucket and subbucket to a rank—doing this we

are able to evenly distribute subbuckets to processes. The

hashing approach instead attempts to eliminate this overhead

by also hashing the bucket and subbucket indexes to map

them to a process—raising some possibility that with fewer

subbuckets, the balancing will be less precise.

2) Dynamic Adaptive Refinement: It is also crucial to

consider that in real-world applications, especially those based

on fixed-point interation, the inherent balance of a relation may

vary arbitrarily across time (becoming more or less balanced).

For this reason, it is important that the balancing a relation’s

representation be permitted to efficiently vary across iterations.

We implement a bucket refinement procedure that can be

triggered by periodic checks to see which buckets, if any,

have become sufficiently imbalanced. Bucket refinement splits

Name ID Edges Union Join TC Edges

cz40948 2567 412148 � 1676697757
mc2depi 2377 2100225 � 276491930625
delaunay n21 2476 6291408 � 308759592
Hardesty3 2833 40451631 � –
circuit5M 2276 59062957 � 11687744437
mawi 201512020130 2803 136024430 � 178113958
kmer A2a 2805 180292586 � 136525288391
union of all – 424592810 � –

TABLE I: List of seven graphs used in our evaluation. Also

listed is the number of edges in the transitive closure of each.

a bucket into 4× as many smaller subbuckets, introducing a

special nonblocking point-to-point communication phase for

redistributing three-quarters of each bucket’s tuples to new

subbuckets.

IV. EVALUATION

As all our RA operations involve an all-to-all communi-

cation phase, we start by performing a benchmark of MPI’s

all-to-all (MPI_Alltoallv) communication capability in

isolation. We then benchmark the scaling properties of our

distributed hash-tree union, join, and transitive closure opera-

tions over a range of large graphs from the literature. Finally

we perform a study of our balanced hash-tree join algorithm.

A. Dataset and HPC platforms

We performed our experiments using the SuiteSparse Ma-

trix Collection [9]. Formerly known as the University of

Florida Sparse Matrix Collection, this dataset is a large and

actively maintained resource for sparse matrices that arise

in real applications. The collection is widely used by the

numerical linear algebra community for the development and

performance evaluation of sparse-matrix algorithms. For our

experiments, we use seven real-world graphs (listed in Table

1) representing a wide range of sizes, two random graphs,

and six synthetic graphs to test extreme topologies (discussed

below). The transitive closure of a graph with n edges can

contain up to n2 edges (a fully connected graph). The number

of edges in the transitive closure of a graph depends on the

connectedness and topology of the input graph.

The experiments presented in this work were performed

on the Theta Supercomputer [2] at the Argonne Leadership

Computing Facility (ALCF). Theta is a Cray machine with

a peak performance of 11.69 petaflops, 281,088 compute

cores, 843.264 TiB of DDR4 RAM, 70.272 TiB of MCDRAM

and 10 PiB of online disk storage. The supercomputer has

Dragonfly network topology and a Lustre filesystem.

B. MPI Alltoallv

All-to-all communication is central to our distributed RA al-

gorithms (section III), as each uses MPI’s MPI_Alltoallv
function to facilitate data communication. MPI_Alltoallv
transmits data between all pairs of processes where each

process can send a variable amount of data by providing

offsets into a buffer. In this section we study both weak

and strong scaling characteristics of MPI_Alltoallv. For
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Fig. 4: Weak (top) and strong (bottom) scaling evaluation of

MPI_Alltoallv function of MPI.

both sets of experiments, we varied the number of processes

from 2,048 to 32,768. We performed 9 sets of weak scaling

experiments where, in each, the amount of data transmitted

by each process (dataproc) was varied from 4 megabytes to

1024 megabytes. For an n-process run, every process transmits

dataproc/n units of data to every other process. For strong

scaling experiments, we performed 6 sets of experiments,

varying the total amount of data generated across processes

(datatotal ) from 64 gigabytes to 2,048 gigabytes. The amount

of data generated by each process is the same; for example,

for an n-process run, transmitting datatotal units of data,

each process produces datatotal/n units of data and transmits

datatotal/n
2 units of data to every other process. The results

of both scaling experiments can be seen in Figure 4.

For both strong and weak scaling runs, we observe a

decline in performance with overall decreasing workload. For

instance, with strong scaling, when total workload is 2,048
gigabytes, we observe near perfect scaling when the number

of processes is doubled from 2,048 (18.5 seconds) to 4,096
(7.3 seconds) to 8,192 (4.5 seconds). After 8,192 processes,

although total time continues to come down with increasing

process count, we see the rate of improvement drop off. When

total workload is only 64 gigabytes, we observe relatively poor

scaling characteristics across the entire process range. Both

these observations may be attributed to an overall reduction

in per-process workload: with less data to transmit, total

time is dominated by initialization costs. For weak scaling

experiments we observe a similar trend: near perfect scaling

for substantial data exchange that drops off as load decreases.

In the context of communication requirements for dis-

tributed RA operations, we find the scaling trends of

MPI_Alltoallv to be encouraging. In general, for a given

workload (i.e., overall tuple count for RA operations), there

will be a range of processes that exhibits good all-to-all scaling

characteristics. What remains is the challenge of identifying

the ideal process count to balance the trade-off between com-

putation and communication. As we observe in section IV-C,

below, with larger per-process workload, computation cost

dominates, as opposed to smaller per-process workload where

total cost is dominated by communication.

C. Hash-tree Union and Join

We examine strong scaling to benchmark the performance of

our distributed hash-tree union. We measure the time to union

the 7 graphs listed in Table 1, not assuming tuples begin on

their appropriate host process (hence the need for a single

all-to-all communication phase). The number of processes

are varied from 64 to 16,384. The total number of edges

across all 7 graphs is 664,659,334 (9.9 gigabytes of data).

The union of all 7 graphs has 424,592,810 edges, indicating

significant overlap among the graphs. Results are plotted in

the top of Figure 5, showing separate timings for in-memory

deduplication, communication, and final insertion. We observe

that the isolated union operation only scales well to 1024
cores, which can be attributed to an increase in communication

time at higher core counts associated with movement of many

small-sized data packets. This result corroborates the trend

seen in section IV-B. At 2,048 and 4,096 processes, though

insertion time is reduced, the per-process workload becomes

small, impeding scalability of the communication phase.

We also examine strong scaling to benchmark the perfor-

mance of our distributed join. We perform a join between the

union of all graphs computed above and itself, to compute

paths of length 2. This join operation yields a graph with

981,818,925 edges. The number of processes are varied from

64 to 16,384. We observe 1.8 billion output tuples generated

per-second at 16k cores (note this includes three phase, local

join, all to all comm and subsequent inserts in a nested b-

tree). The pure insertion rate at the same core count is 14.83
billion keys per-second, peak aggregate throughput. Once both

relations (i.e., the graph indexed on column 1 and on column

0) are initialized across all processes, we initiate the join

operation. We plot the scaling results for join in the bottom

of Figure 5. Unlike unions, distributed join demonstrates near

perfect scaling to 8,192 processes. The trend can be attributed

to the fact that there is a greater overall workload for join—

enabling performance at higher process counts—and that the

all-to-all communication phase increasingly dominates at these

higher process counts and itself does not scale perfectly.
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Fig. 5: Strong scaling for hash-tree union (top) and join.

Scaling thus diminishes after 8k processes, as the ratio of

overall communication to per-process computation increases.

1) Transitive closure: The transitive closure (T ) of an input

graph (G) is iteratively extended by adding new paths discov-

ered by a join operation until a fixed point is reached, and no

new paths can be added to T . We performed strong scaling

analysis for a graph with edge count 2,100,225 (mc2depi),

varying the number of processes from 4, 096 to 32,768. The

graph attained its fixed point after 2,956 iterations, generating

a total of 276,491,930,625 edges (4 terabytes). As can be seen

in Figure 6, our approach takes 1, 114 seconds at 32,768 cores

to compute the transitive closure. To the best of our knowl-

edge, this is the first implementation that has successfully

computed the transitive closure of such a large graph. The time

taken per iteration is roughly fixed at around 0.37 seconds per

iteration (at 32,768 cores). This is mainly because of the ring-

like topology of the graph; such graphs progress from O(n) to

O(n2) edges, adding a constant O(n) number of edges at each

iteration. The aggregate all-to-all communication time goes

from 50% of the total time at 4,096 processes to 82% of total

time at 32,768 processes. As reflected in our study on join in

isolation, we do not observe ideal scaling beyond about 8,192
processes due to increasing all-to-all communication costs at

higher process counts.
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Fig. 6: Transitive closure of graph with edge count 2,100,225.

D. Balanced hash tree joins

In this section, we study two different aspects of the

balanced-hash-tree join algorithm. First, we study the im-

pact of two different subbucket-to-process mapping schemes:

round-robin and hashing. Second, we study how the algorithm

behaves with varying inherent imbalance (key skew).

1) Sub-bucket to process mapping: round robin vs hashing:
We use the transitive-closure computation in a strong scaling

setting to study the impact of our two mapping strategies.

We use a graph with 412,148 (cz40948) edges, and vary

the number of processes from 128 to 4,096. The graph

attained its fixed point after 2,933 iterations, generating a

total of 1,676,697,415 edges (25 gigabytes). We performed all

our experiments using both the round-robin and the hashing

scheme. The results are plotted in Figure 7. We observe that

hashing is consistently slower than the round-robin scheme at

all core counts. Further, looking at the subbucket-to-process

distribution, we find, for all runs, around 35% of the processes

remain idle without any sub-bucket to work on—hashing does

a poor job in distributing the sub-buckets uniformly across the

processes. The reason hashing is ineffective here, compared

to hashing on keys, is because the number and range of

subbuckets is small compared to the range values of the keys.
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Load Imbalance in G

Load Imbalance in T

Load Imbalance in both G and T

Load Imbalance in G          Load Imbalance in T       Load Imbalance in G and T

Fig. 8: The top three graphs show imbalances for the string

topology; the three graphs in the last row show imbalance in

the ring topology.

2) Sensitivity study: In this section, we evaluate the perfor-

mance of our approach for inherently imbalanced relations. We

first synthesize varying degrees of skew in two topologically

distinct extreme cases. We use a ring-topology graph that leads

to a fully connected (therefore balanced) transitive closure

graph, and we use a string-topology graph whose transitive

closure is smoothly imbalanced with each vertex connected to

all downstream vertices.

We add varying degrees of initial skewness to these graphs

by adding extra edges that either share one source node, one

target node, or one of each. While computing the transitive

closure, the first scenario leads to an imbalance in graph G,

the second case corresponds to imbalance in graph T and the

third case causes imbalance in both. See Figure 8 for examples.

We vary the degree of skewness by adding a proportional

number of edges. We conduct all our experiments at a core-

count of 256 using a graph with 20, 000 nodes and varying

the load imbalance factor by 20%, 40%, 60%, and 80%. In

our experiments, we perform just one load-balancing operation

after the first iteration.

We observe that the balanced-hash-tree algorithm either

outperforms, or is at-worst equal, compared to the hash-

tree algorithm in each case. For graphs with imbalance in

both G and T (first column), we observe similar trends

for both string and ring topologies; balanced hash-tree join

outperforms the hash-tree joins for all load imbalance factors.

For ring-topology graphs, absolute timings are very-roughly

double, due to the final TC having double the edges of

the string-topology’s TC. For the ring-topology graphs, the

final TC is perfectly balanced, so when it is imbalanced in

G, a single balancing operation suits the computation as G
is never updated; when it is imbalanced in T , subbucket

consolidation is required and higher degrees of skew continue

to perform poorly. For the string-topology graphs, the final

TC is smoothly imbalanced, so when it is imbalanced in G,

initial balancing has little impact; when it is imbalanced in T ,

initial balancing at least partially supports the necessary final

balancing of T . Overall, we find that bucket refinement helps

reduce both the computation and communication overhead.

We also compared TC of two random graphs, generated

via RMAT [17], at 256 processes, both with load balancing

versus without. Both had 100,000 vertices and 200,000 edges.

The first was generated with parameters a = 0.6, b = 0.2,

c = 0.2, and had a maximum degree of 2636, average degree

of 9.1, and a transitive closure with 471,606,725 edges. This

graph took 115 seconds without load balancing and 98 seconds

with (a 14.8% improvement). The second was generated with

parameters a = 0.7, b = 0.15, c = 0.15, and had a maximum

degree of 2852, average degree of 13.5, and a transitive closure

with 215,517,294 edges. This graph took 92 seconds without

load balancing and 78 seconds with (a 15.2% improvement).

As part of the future work, we plan to develop an adaptive

load balancing scheme that is robust both to arbitrary graph

topologies and to arbitrary changes in topology across time.

It is important such a system can adaptively both refine and

merge subbuckets based on the relative sizes of buckets in a

cost efficient manner.

V. RELATED WORK

Much work has gone into accelerating single-node join

performance [4], [12], [13], [15], however we tried to duplicate

the TC computation that we used for our strong-scaling study

using the state-of-the-art Datalog solver Soufflé [21], on a

single 28-thread node, and it did not complete within 10 hours.

The double-hashing approach with local hash-based joins

and hash-based distribution of relations is the most commonly

used method to massively parallelize join operations. This

algorithm involves partitioning the input data so that they can

be efficiently distributed to the participating processes. This

early foundational approach was first introduced in [25]. Much

work such as [8] and [7] has since built on top of this approach.

Our approach does as well, but differs from this method in

several respects. First, we take lessons from state-of-the-art

approaches to parallelism on single-node machines and use a

nested tree-based structure to encode relations [12], [13]. In

addition, we are the first to address efficient communication

and the use of MPI’s all-to-all communication paradigm to

permit fixed-point iterations. Finally, ours is the first demon-

stration of RA load balancing and an end-to-end relational

algebra application at HPC scale.

Recently, with [5], there has been a concerted effort to

implement distributed join operations on clusters using MPI.

The commonly used radix-hash join and merge-sort join have

been re-designed for this purpose. Both these algorithms

partition data so that they may be efficiently distributed to

participating processes and are designed so that inter-process

communication is minimized. In both of these implementations

one-sided RMA operations are used to remotely coordinate
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Fig. 9: Sensitivity study for ring and string topology

distributed joins and to overlap communication and compu-

tation. This implementation involved scaling to 4,096 nodes,

and reached extremely high peak tuples/second throughput,

but did not specifically address the communication challenges

required to implement fixed-point algorithms over RA, and

only considered uniform (perfectly balanced) relations—citing

replication-based balancing as future work. The experiments

used to achieve peak throughput are also not representative

of realistic workloads as each key is reported to have exactly

one matching tuple in each relation being joined. Crucially, the

work does not consider inter-node transmission of materialized

joins and their remote staging for another join operation—

which is central to applications such a transitive closure

and distributed logical inference. This paper does integrate

acceleration of local joins via AVX/SIMD instructions, as

in [4], [15], pay careful attention to cache behavior, and

to data compression. We plan to explore such orthogonal

improvements to our per-process join as future work, but have

focused presently on the issues of communication and load-

balancing that are central to distributed RA applications.

There has been some work in the past to scale RA operations

on GPUs. For example, Redfox is a single-GPU implementa-

tion of RA primitives [28]. While RedFox takes an interesting

approach to RA on the GPU, it does not address crucial

aspects of the task such as deduplication of tuples generated

by joins and unions. Other work such as [18] and [30] have

also explored the use of GPUs to scale dedicated RA tasks

like the triangle listing problem. GPU-based hash tables have

also been extended to multi-GPU algorithms that distribute

relations over multiple accelerators [14].

Our implementation heavily relies on all-to-all communi-

cation. We use the MPI_Alltoallv function to transmit

data from every process to every other process. Our use is

related to distributed hash tables more generally [19], which

make effective use of all-to-all communication, except that

we co-locate multiple distributed hash tables for the purposes

of performing efficient joins. MPI_Alltoallv is one of the

most communication-intensive collective operation used across

parallel applications such as CPMD [1], NAMD [20], LU fac-

torization, fast fourier transform (FFT) and matrix transpose.

Much research [16], [6], [24] has gone into developing scalable

implementations of collective operations; most of the existing

HPC platforms therefore have a scalable implementation of

all-to-all operations.

VI. CONCLUSION & FUTURE WORK

We have presented the first general algorithms for scalable

relational algebra on supercomputers that account for load

balancing and fixed-point iteration. Our approach addresses

both representation and communication among portions of a

distributed relation, along with balancing inherently imbal-

anced relations, laying the groundwork for scaling algorithms

that require a pipeline of repeated operations on relations, or

fixed-point iteration, such as logical and constraint problems,

deductive databases, and static program analyses.

Our existing system is not without limitations. We have

not completely solved the problem of adaptive load-balancing.

21



In our existing solution we are successfully able to reduce

imbalance by splitting, however, we do not have a scheme for

merging light-weight sub-buckets—a necessary capability as

illustrated by Figure 9c. Moving forward, we require a solution

that is fully robust to changes across time. We also observe

that some iterations can overflow memory by producing too

many output tuples in a single iteration. To address this we are

implementing a thresholding technique that allows partial joins

to roll-over from one iteration to the next; we hypothesize this

will allow us to compute the transitive closure of SuiteSparse

graph Hardesty3. Finally, we plan to implement a distributed

interns table so we may support primitive operations on base

values, such as strings, in the context of our (Datalog-like)

logic-programming language.
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