
Parameterized Algorithms for Non-uniform All-to-all
Ke Fan1, Jens Domke2, Seydou Ba2, and Sidharth Kumar1

1University of Illinois Chicago, Chicago, IL, USA
2RIKEN Center for Computational Science, Kobe, Japan

{kfan23,sidharth}@uic.edu,{jens.domke,seydou.ba}@riken.jp

ABSTRACT
MPI_Alltoallv generalizes the uniform all-to-all communication
(MPI_Alltoall) by enabling the exchange of data-blocks of varied
sizes among processes. This function plays a crucial role in facil-
itating many computational tasks, such as FFT calculations and
graph mining operations. Popular MPI libraries, such as MPICH and
OpenMPI, implement MPI_Alltoall using a combination of linear
and logarithmic algorithms. However, MPI_Alltoallv typically
relies only on variations of linear algorithms, missing the benefits
of logarithmic approaches. Furthermore, current algorithms also
overlook the intricacies of modern HPC system architectures, such
as the significant performance gap between intra-node (local) and
inter-node (global) communication. To address these problems, this
paper presents two novel algorithms: Parameterized Logarithmic
non-uniform All-to-all (ParLogNa) and Parameterized Linear non-
uniform All-to-all (ParLinNa). ParLogNa is a tunable logarithmic
time algorithm for non-uniform all-to-all, and ParLinNa is a hier-
archical and tunable near-linear-time algorithm for non-uniform
all-to-all. These algorithms efficiently address the trade-off between
bandwidth maximization and latency minimization that existing
implementations struggle to optimize. We show a performance im-
provement over the state-of-the-art implementations by factors of
42x and 138x on Polaris and Fugaku, respectively.

ACM Reference Format:
Ke Fan1, Jens Domke2, Seydou Ba2, and Sidharth Kumar1. 2025. Parame-
terized Algorithms for Non-uniform All-to-all. In The 34th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’25), July 20–23, 2025, Notre Dame, IN, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3731545.3731590

1 INTRODUCTION
Motivation: Optimizing data movement remains a critical chal-
lenge in the era of exascale. Collective communication that involves
data exchange among (almost) all processes is an important class
of data movement. Owing to its global scope, collectives are typ-
ically difficult to scale and can consume a substantial portion of
the overall execution time in applications, often accounting for
between 25% and 50%, or more [3]. Machine learning (ML) appli-
cations, in particular, depend heavily on all-reduce and all-to-all
(both uniform and non-uniform) collectives, which are crucial in
efficiently shuffling data and synchronizing parameters during the

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1869-4/2025/07
https://doi.org/10.1145/3731545.3731590

parallel training process [7, 37]. Beyond ML, various HPC work-
loads heavily utilize non-uniform all-to-all communication. These
include graph algorithms like PageRank [4], Fast Fourier Transform
(FFT) computations [27], quantum computer simulations [35], and
certain advanced preconditioners and solvers [8].

Limitation of state-of-art approaches: State-of-the-art im-
plementations of non-uniform all-to-all communication typically
rely on linear-time algorithms. In contrast, uniform all-to-all collec-
tive implementations utilize either linear-time algorithms (e.g., the
scattered algorithm [1]) or logarithmic-time algorithms (e.g., the
Bruck algorithm [32]), depending on the message sizes. Adapting
logarithmic-time algorithms for non-uniform all-to-all communica-
tion is a challenging task and has only recently been explored [11].
Both existing log and linear time approaches for non-uniform all-
to-all exchanges have limitations.

The log time approach presented in [11] works only for a fixed
radix of 2, where it prioritizes low latency by requiring only log2 𝑃
communication rounds, where 𝑃 represents the number of pro-
cesses. However, this approach significantly increases the total
volume of data exchanged, making it most suitable for only small-
sized messages that are dominated by latency. The inability to vary
the radix and, therefore, tune the total number of communication
rounds and the amount of data exchanged renders the approach
usable for limited message sizes. An adjustable communication pat-
tern with tunable radix could offer better performance by making
calculated trade-offs: slightly increasing the overall workload to
better utilize available bandwidth while simultaneously reducing
latency. Our work aims to address this gap.

While the existing log approach lacks the ability to be tuned, the
existing linear time approach (such as scattered) lacks the ability to
take advantage of the hierarchical architecture of existing HPC sys-
tems. Today’s HPC infrastructure consists of computational nodes
containing multiple CPU sockets, each equipped with several pro-
cessing cores. Data exchanges between cores within the same node
experience significantly lower latency than those between cores
on different nodes. By not leveraging this architectural hierarchy,
existing linear approaches overlook opportunities for substantial
performance optimization. Our work also aims to address this gap.

Key insights and contributions: Our research focuses on im-
proving the efficiency of all-to-all communication for non-uniform
data distributions, addressing the limitations of existing approaches.
We introduce two novel algorithms called ParLogNa (Parameterized
Logarithm Non-uniform All-to-all) and ParLinNa (Parameterized
LinearNon-uniformAll-to-all) specifically designed for non-uniform
all-to-all workloads.

ParLogNa’s key innovation lies in its ability to adjust the radix,
which determines the base of the logarithmic complexity. This radix
can be set anywhere between 2 and 𝑃 . By allowing fine-grained
control over the radix, ParLogNa enables users to optimize the

https://doi.org/10.1145/3731545.3731590
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3731545.3731590


HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

trade-off between the number of communication rounds and the
size of data exchanges, leading to improved performance scalability.
ParLogNa is a first-of-its-kind parameterized algorithm designed
for non-uniform all-to-all data exchanges that uniquely allows
users to adjust the volume of data transferred and the number of
communication rounds, enabling optimization of bandwidth usage
and latency reduction.

ParLinNa represents an evolution of the scattered algorithm,
operating as a near-linear-time solution with two distinctive capa-
bilities. The algorithm’s primary innovation lies in utilizing HPC
system architecture through a decoupled communication struc-
ture. This structure separates data exchanges into two distinct
phases: intra-node communication utilizing shared memory within
nodes and inter-node communication facilitating message transfer
across the network. Additionally, ParLinNa incorporates dual para-
metric controls, with separate tunable parameters governing the
intra-node and inter-node communication phases, enabling precise
performance optimization at both levels.

In summary, our paper makes the following contributions:

(1) We develop ParLogNa, capable of adjusting the radix (𝑟 ) from 2
to 𝑃 . Evaluation of ParLogNa reveals: small radices work for
small messages, a radix close to

√
𝑃 improves mid-sized com-

munication, and large radices work for large messages.
(2) We develop a near-linear-time algorithm, ParLinNa, which de-

couples communication into local intra-node and global inter-
node data exchange phases to improve performance further.

(3) We perform a detailed evaluation of our techniques using scal-
ing studies (up to 16k processes) on Fugaku [30] and Polaris [2].
Our algorithms exhibit a performance improvement of 60.60×
(ParLogNa), 138.59× (ParLinNa) over the vendor implementa-
tion of MPI_Alltoallv.

Experimental methodology and artifact availability: We
thoroughly evaluated our algorithms using micro-benchmarks and
real applications on two supercomputers: Polaris at Argonne Na-
tional Laboratory and Fugaku at RIKEN R-CCS. In evaluating our
approach, we used two complementary comparison strategies. We
benchmarked against the vendor-optimized MPI_Alltoallv imple-
mentation, which automatically selects algorithms based on run-
time parameters such as the size of data-blocks (𝑆) and 𝑃 . However,
recognizing that this automatic selection might not always identify
the optimal algorithm, we took an additional step: we individually
implemented and tested every available alltoallv algorithm from
both the OpenMPI [15] and MPICH [18] libraries. This exhaustive
testing, documented in Section 5.3 (Figures 11 and 12), ensured
we were comparing our method against the best possible existing
MPI implementation rather than relying solely on MPI’s automatic
algorithm selection.

2 BACKGROUND
In this section, we provide a concise overview of the fundamental
base algorithms to establish a clear context for our work.

(a) Bruck [6, 32] is a classic logarithmic uniform all-to-all al-
gorithm with radix (base) 2. It comprises three phases: an initial
rotation phase, a communication phase with 𝑙𝑜𝑔2𝑃 rounds, and an
inverse rotation phase. It is a store-and-forward algorithm, where

10

P1
S R T

11

12

13

P0
P2

[2, 3]
[3, 2]

0-00

1-01

2-10

3-11

1

10

P1
S R T

11

12

13

P3
P3

[3, 1]
[4, 3]

1

2

01 03

2

11 11

21
31

00

01

02

03

P0
S R T

10

P1
S R T

P2
S R T

P3
S R T

11

12

13

20

21
22

23

30

31

32

33

(B)

(C) (D)(A)

01 03

S: send buffer, R: receive buffer, T: temporary buffer

Figure 1: Example of the ParLogNa with 𝑃 = 4 and 𝑟 = 2. (A) is
the initial state. 𝑆 is made of 4 data-blocks (of different sizes),
shown in different colors. (B) shows the rotated data-block
indices and their matching binary representation for 𝑃1. (C)
and (D) illustrate two communication rounds for 𝑃1. A two-
phase communication scheme is employed in each round: 1○
metadata exchange, and 2○ actual data exchange.

data-blocks received during one round are forwarded in subsequent
rounds for further transmission.

(b) Two-phase non-uniformBruck [11] is a logarithmic non-uniform
all-to-all algorithm with radix 2. Owing to the nature of the store-
and-forward algorithm, adapting Bruck for non-uniform all-to-all
requires that each process has: (1) prior knowledge of the data size
they will receive during intermediate rounds, and (2) access to a
large buffer to store intermediate data. The algorithm employs a
coupled communication strategy consisting of metadata and data
exchange phases to manage the non-uniform workload, while also
using a large temporary buffer for intermediate data storage.

(c) Parameterized Uniform Bruck [13] is the generalized version of
Bruck for uniformworkloads, where the radix can be tuned between
2 and 𝑃 . This gives the ability to tune the number of communication
rounds and the amount of data exchanged. The paper [13] offers
valuable insight into the selection of the optimal radix, notably by
observing that 𝑟 =

√
𝑃 yields the best overall performance.

(d) Standard non-uniform all-to-all: In bothMPICH and OpenMPI,
MPI_Alltoallv implementations employ variants of the spread-out
(linear) [22] algorithm. Spread-out schedules all send and receive
requests in a round-robin order, ensuring that each process sends
to a unique destination per round to avoid network congestion. The
scattered algorithm in MPICH further improves this by dividing
communication requests into batches, where a tunable parameter,
batch-size, decides the size of batches. It waits for all the requests
in one batch to be completed before moving on to the next, further
reducing network congestion. OpenMPI’s linear approach deviates
from spread-out, as it initiates all communication in ascending rank
order instead of round-robin. OpenMPI’s other implementation,
called pairwise algorithm, initiates a single receiving request with
the non-blocking Irecv and opts for a blocking Send. It then awaits
the completion of these two requests per communication round.

3 PARAMETERIZED LOGARITHMIC
NON-UNIFORM ALL-TO-ALL (PARLOGNA)

In this section, we present the Parameterized Logarithmic Non-
uniform All-to-all (ParLogNa) algorithm, which facilitates non-
uniform all-to-all data exchanges in a configurable number of com-
munication rounds, parameterizedwith a tunable radix (𝑟 ). ParLogNa



Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

is built upon three key ideas: (1) a logarithmic-time generalized
implementation of the Bruck-style algorithm with varying radices
(see Section 3.1), (2) a two-phase data exchange mechanism in each
communication round, comprising a metadata exchange followed
by actual data transfer (see Section 3.2), and (3) a strategically sized
temporary buffer (𝑇 ) to support intermediate data exchanges during
logarithmic communication rounds (see Section 3.3). To improve
clarity, we also provide a table summarizing the definitions of nota-
tions frequently used in this paper (see Table 1).

3.1 Tunable radix
In non-uniform all-to-all communication, each process exchanges
a distinct data-block with every other process, where the size of
each individual data-block may vary. An all-to-all implementation
accomplishes the entire communication through 𝐾 rounds of point-
to-point communication, during which a total of 𝐷 data-blocks are
exchanged. In Bruck, 𝐾 = log2 𝑃 , and scattered, 𝐾 = 𝑃 . Within
ParLogNa, both 𝐾 and 𝐷 are parameterized on the radix 𝑟 and 𝑃 as
described below.

Every process encodes the indices of their 𝑃 data-blocks using a
𝑟 -base representation (see Figure 1 (B)). In this encoding scheme,
the maximum number of digits required is denoted by𝑤 = ⌈𝑙𝑜𝑔𝑟𝑃⌉,
and each digit can assume one of 𝑟 unique values. For example,
in Figure 1,𝑤 = 𝑙𝑜𝑔24 = 2, and each digit is 0 or 1. Consequently, a
given data exchange round𝑘 (0 ≤ 𝑘 < 𝐾) can be uniquely identified
by two variables: 𝑥 (0 ≤ 𝑥 < 𝑤) and 𝑧 (1 ≤ 𝑧 < 𝑟 ). The variable 𝑥
represents the digit position within the 𝑟 -base encoding, while 𝑧
corresponds to the specific value of the digit at that position. This
leads to 𝐾 ≤ 𝑤 · (𝑟 − 1) communication rounds. During each round,
each process sends the data-blocks whose 𝑥𝑡ℎ digit matches the
value 𝑧 to the process with a rank distance of 𝑧 · 𝑟𝑥 . For instance,
in Figure 1 (C), P1 sends the data-blocks whose 0𝑡ℎ digit equals 1
to P2 whose rank distance is 1 · 20 = 1. Each process transmits up
to 𝑟𝑤−1 data-blocks per round, bounding 𝐷 to𝑤 · (𝑟 − 1) · 𝑟𝑤−1.

This communication strategy shows that both 𝐾 and 𝐷 are func-
tions of 𝑟 . These two parameters exhibit an inverse correlation,
meaning an increase in 𝐾 corresponds to a decrease in 𝐷 , and
vice versa. 𝐾 represents the latency-related metric while 𝐷 is the
bandwidth-related metric. As a result, by increasing 𝑟 , the algorithm
can effectively transition from a latency-bound regime (low latency)
to a bandwidth-bound regime (high bandwidth). This trade-off be-
tween 𝐾 and 𝐷 , facilitated by adjusting 𝑟 , provides a mechanism
for tuning the communication performance.

3.2 Two-phase communication
Although parametrization allows us to adjust 𝐾 and 𝐷 , it does not
directly address the non-uniform nature of workloads. The param-
eterized Bruck [13] is not suitable for non-uniform in its current
form. This is because the Bruck-style algorithm requires certain data
blocks to traverse multiple intermediate steps before reaching their
final destination. In addition, the algorithm is a store-and-forward
approach, which utilizes send-and-receive buffers as temporary
storage during the intermediate communication phases. To accom-
modate non-uniform data distributions, we incorporate two key
elements: a two-phase communication scheme and a temporary
buffer (𝑇 ). The scheme facilitates the exchange of intermediate data

1

3

5

7

(a) P = 8, r = 2

2
3

6
7

4
5
6
7

0
1
2
3
4
5
6
7

1

4

7

2

5

3
4
5

6
7

0
1
2
3
4
5
6
7

1

5

2

6

3

7

4
5
6
7

0
1
2
3
4
5
6
7

(b) P = 8, r = 3

0

1
2
3

0
1

2

(c) P = 8, r = 4

0
1
2

1

2

1

2

1

2

x 0 1 2 0 0x 1 1 0 0x 0 1

Figure 2: Examples of memory optimization with three con-
figurations, each showing a single process and the data blocks
exchanged per communication round. In each round, green
blocks reach their destination, while blue blocks are tem-
porarily stored in 𝑇 for transfer in later rounds. Meanwhile,
green blocks with red boxes are sent only once during the en-
tire communication, allowing their space in 𝑇 to be omitted.

blocks, while 𝑇 provides the necessary storage for these blocks
during the data exchange phase.

The two-phase scheme is employed in each communication
round; the first metadata-exchange phase transfers the size of each
sent data-block, followed by the actual transmission of data. For
instance, in Figure 1 (C), process 𝑃1 needs to send data-blocks 12
and 10 to process 𝑃2 (highlighted with green boxes). 𝑃1 first sends
an array [3, 2] to 𝑃2, representing the sizes of the two data-blocks.
During the data exchange phase, the sizes of the received data
blocks may be larger than the sent ones in the send buffer or the
corresponding segments in the receive buffer (𝑅). To solve this issue,
the algorithm employs a temporary buffer (𝑇 ) to accommodate for
all intermediate received data blocks that will be transferred again
in subsequent rounds, while data blocks destined for the current
process are stored in 𝑅. For instance, in Figure 1 (C), 𝑃1 receives
data-blocks 01 in 𝑅 and 03 in𝑇 from 𝑃0. In the next round ( Figure 1
(D)), 𝑃1 sends the data-block 03 from 𝑇 again to 𝑃3. Upon complet-
ing the communication phase, all processes receive the required
data-blocks in 𝑅, which lie in ascending order, as illustrated in Fig-
ure 1 (D). Utilizing both 𝑇 and 𝑅, ParLogNa effectively manages
and rearranges the received data-blocks, eliminating the overhead
associated with the final rotation phase.

Table 1: Definitions of Notations

P Total number of processes ≥ 1
r Base of the logarithmic complexity 2 ≤ 𝑟 < 𝑃
S Maximum size of data-blocks ≥ 0 (bytes)
N Number of nodes ≥ 1
Q Number of processes per node ≥ 1
K Number of communication rounds 𝑙𝑜𝑔2𝑃 ≤ 𝐾 < 𝑃

w Number of digits with base-r encoding ≥ 1
D Number of exchanged data-blocks 𝑃 ≤ 𝐷 < 𝐾 · 𝑟𝑤−1

3.3 Estimating temporary buffer size
Previous studies onmodifying Bruck-style methods for non-uniform
workloads, including the two-phase non-uniform Bruck, adopted a
specific approach to temporary buffer sizing [11, 36]. They designed
the temporary buffer (𝑇 ) to accommodate all data-blocks by setting
its size to the product of two factors: the maximum block size (𝑆)



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

P0 P1 P2
00 10 20
01 11 21
02 12 22
03 13 23
04 14 24
05 15 25
06 16 26
07 17 27
08 18 28

P3 P4 P5
30 40 50
31 41 51
32 42 52
33 43 53
34 44 54
35 45 55
36 46 56
37 47 57
38 48 58

P6 P7 P8
60 70 80
61 71 81
62 72 82
63 73 83
64 74 84
65 75 85
66 76 86
67 77 87
68 78 88

Initial Data

P3 P4 P5
30 40 50
31 41 51
32 42 52
33 34 35
43 44 45
53 54 55
36 46 56
37 47 57
38 48 58

P3 P4 P5
30 31 32
40 41 42
50 51 52
33 34 35
43 44 45
53 54 55
36 37 38
46 47 48
56 57 58

N0 N1 N2 N1N1

(a) (b) 

g0

g1

g2

Figure 3: Two intra-node strategies: (a) explicit and (b) im-
plicit (ours). Assuming data blocks on each node are logically
divided into 𝑁 = 3 groups, each process within a node has
𝑄 = 3 data-blocks per group. An explicit strategy performs all-
to-all only within the group whose index matches the node’s
ID. Our approach performs all-to-all within each group.

across all processes and 𝑃 . While this approach works, it is wasteful
in its memory requirements and can lead to memory overflow
for large values 𝑆 or 𝑃 . We observe that 𝑇 only needs to store a
certain number of intermediate data-blocks, and therefore, a tighter
bound on the size of 𝑇 can be obtained. To this end, we performed
a theoretical analysis of the underlying communication pattern.

We observe that for every communication round, a process sends
at most 𝑟𝑥 data-blocks that reach their destination. In contrast, the
remaining blocks are only transferred to some intermediate process
that gets sent in the coming communication rounds. Here,𝑥 refers to
the digit of indices of data-blocks in r-base encoding, ranging from 0
to𝑤 (see Section 3.1). For instance, Figure 2 (a) with 𝑃 = 8 processes
and 𝑟 = 2 requires three rounds. In each round, the data-blocks
needed to be temporarily stored in 𝑇 are marked in blue, while
those reaching their destination are marked in green. For example,
there are 21 = 2 green data-blocks in the second communication
round. Notably, we observed that in each round, the first data-block
is always sent directly to its destination process without further
transfers in subsequent rounds, referred to as the direct data-block.
In Figure 2 (a), the green data-blocks highlighted with red boxes
indicate the direct data-block. Since direct data-blocks do not need
to be stored in𝑇 , we can put a tighter bound on their size. A process
can set 𝑇 to store 𝐵 = (𝑃 − (𝐾 + 1)) data-blocks, accounting for
one block destined for itself. We note that (𝐵) is a function of both
𝑟 and 𝑃 , the value of which decreases as 𝑟 increases for a given 𝑃 .
For instance, in Figure 2, 𝑟 takes values of 2, 3, and 4 in subfigures
(a), (b), and (c), respectively. The corresponding value of 𝐵 for the
three radices is 4, 3, and 3. This approach significantly reduces the
memory footprint for 𝑇 when using a high radix 𝑟 . In particular,
when 𝑟 exceeds (𝑃 − 2), no temporary buffer is required (equivalent
to a linear-time scattered algorithm).

While our approach minimizes the size of 𝑇 , it introduces the
challenge of mapping the indices of the data-block (referred to as
𝑜) into 𝑇 . For example, in Figure 2 (a), 1○ indicates the original
indices (𝑜) of data-blocks, ranging from 0 to 7 and 2○ represents the
corresponding mapped indices (𝑡 ) in 𝑇 , ranging from 0 to 3. Such
as 𝑜 = 3 maps 𝑡 = 0 while 𝑜 = 5 maps 𝑡 = 1. The new position (𝑡 ) is

Algorithm 1 ParLogNa Algorithm
1: Find maximum data-block size 𝑆 with MPI_Allreduce;
2: Allocate a temporary buffer 𝑇 with necessary length;
3: Allocate rotation array 𝐼 for each process 𝑝;
4: 𝐼 [𝑖] = (2 × 𝑝 − 𝑖 + 𝑃) % 𝑃, 𝑖 ∈ [0, 𝑃];
5: for 𝑥 ∈ [0,𝑤] do
6: for 𝑧 ∈ [1, 𝑟 ] do
7: n = 0;
8: for 𝑖 ∈ [0, 𝑃] whose 𝑥 th digit of r-encoding is 1 do
9: sd[𝑛++] = (𝑝 + 𝑖) % 𝑃 /* sd: the array for 𝑛 send

data-block indices */
10: end for
11: sendrank = (𝑝 − 𝑧 × 𝑟𝑥 + 𝑃) % 𝑃 ;
12: recvrank = (𝑝 + 𝑧 × 𝑟𝑥 ) % 𝑃 ;
13: Send metadata to sendrank and receive updated metadata

from recvrank;
14: Send sent data-block 𝐼 [sd[𝑖]] (𝑖 ∈ [0, 𝑛]) to sendrank;
15: if (𝑖 % 𝑟𝑥 == 0) (𝑖 ∈ [0, 𝑛]) then
16: Receive data-block 𝑖 into 𝑅 from recvrank;
17: else
18: Receive data-block 𝑖 into 𝑇 from recvrank;
19: end if
20: end for
21: end for

calculated as 𝑡 = 𝑜 − 1−𝑑𝑥 · (𝑟 − 1) −𝑑𝑧; this corresponds to taking
the block’s original index (𝑜) and subtracting the number of direct
data-blocks with lower indices than the current block. Variables
𝑑𝑥 and 𝑑𝑧, mirrors 𝑥 and 𝑧 explained in Section 3.1. 𝑑𝑥 = ⌈𝑙𝑜𝑔𝑟𝑜⌉
represents the highest digit when encoding index 𝑜 of a data-block
in the r-encoding, and 𝑑𝑧 = 𝑜/𝑟𝑑𝑥 represents the value of that digit.

Algorithm: The pseudocode of ParLogNa is shown in Algo-
rithm 1. It shows the three core ideas of ParLogNa: (1) a logarithmic
number of data exchange phases executed using a tunable number
of communication rounds. The number of rounds is parameterized
by the variables 𝑥 and 𝑧, as shown in lines 5 and 6. (2) Each data
exchange phase comprises two sub-phases: a meta-data exchange
and the actual data exchange. This two-phase approach is evident
in lines 13 and 14 of the pseudocode. (3) Creation and usage of an
optimally sized temporary buffer (𝑇 ), as shown in lines 2 and 18.

4 PARAMETERIZED LINEAR NON-UNIFORM
ALL-TO-ALL (PARLINNA)

Modern HPC systems feature a hierarchical architecture, in which
each computing node comprises multiple CPU cores with shared
memory access [20]. This facilitates rapid intra-node data exchanges
via direct memory transfers, typically significantly faster than inter-
node exchanges (over the network). To leverage this hierarchical
architecture, we present the Parameterized Linear Non-uniform
All-to-all (ParLinNa) algorithm. This algorithm has two salient
features. First, it leverages the hierarchical structure of HPC sys-
tems by decoupling the communication rounds into two phases:
(1) intra-node communication and (2) inter-node communication.
The intra-node phase uses shared memory within a node, while the
inter-node communication transfers messages over the network.



Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

P0 P1 P2 P3 P4
00 10 20 30 40
01 11 21 31 41
02 12 22 32 42
03 13 23 33 43
04 14 24 34 44
05 15 25 35 45
06 16 26 36 46
07 17 27 37 47
08 18 28 38 48
09 19 29 39 49
10 20 30 40 50
11 21 31 41 51
12 22 32 42 52
13 23 33 43 54
14 24 34 44 54

P0 P1 P2 P3 P4
00 01 02 03 04
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44

(1) Initial Data 

N0
P0

00 00
04 01
03 02
02 03
01 04
05 05
09 06
08 07
07 08
06 09
10 10
14 11
13 12
12 13
11 14

P0
000 00
100 01
011 02
010 03
001 04
000 05
100 06
011 07
010 08
001 09
000 10
100 11
011 12
010 13
001 14

P0
000 00
100 01
011 02
010 03
001 04
000 05
100 06
011 07
010 08
001 09
000 10
100 11
011 12
010 13
001 14

P1
P4

P2
P3 P0

000 00
100 01
011 02
010 03
001 04
000 05
100 06
011 07
010 08
001 09
000 10
100 11
011 12
010 13
001 14

P4
P1

(2) R after intra

N0
P0 P1 P2 P3 P4

05 06 07 08 09
15 16 17 18 19
25 26 27 28 29
35 36 37 38 39
45 46 47 48 49
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44
50 51 52 53 54

T after intra

N0
P0 P1 P2 P3 P4

05 06 07 08 09
15 16 17 18 19
25 26 27 28 29
35 36 37 38 39
45 46 47 48 49
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44
50 51 52 53 54

N0 N1
N2

P0 P1 P2 P3 P4
00 01 02 03 04
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44
50 51 52 53 54
60 61 62 63 64
70 71 72 73 74
80 81 82 83 84
90 91 92 93 94

R

N0

N1 N2
P5 
P6 
P7 
P8 
P9

P10 
P11 
P12 
P13 
P14

P0 P1 P2 P3 P4

05 06 07 08 09
15 16 17 18 19
25 26 27 28 29
35 36 37 38 39
45 46 47 48 49
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44
50 51 52 53 54

N0
P0 P1 P2 P3 P4
00 01 02 03 04
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34
40 41 42 43 44
50 51 52 53 54
60 61 62 63 64
70 71 72 73 74
80 81 82 83 84
90 91 92 93 94
100 101 102 103 104

110 111 112 113 114

120 121 122 123 124

130 131 132 133 134

140 141 142 143 144

R

N0

T T

N2
N1

0 1 2 3 4 5

a
b

Figure 4: An example of ParLinNa when 𝑃 = 15, 𝑁 = 3, 𝑟 = 2 and𝑄 = 5. (1) depicts the initial state in send buffer for all processes
within node 𝑁 0. Each process logically has𝑄 data-blocks in every 𝑁 group (separated by red boxes). 0○ shows the rotation index
array for 𝑃0 based on the group rank ID ( 𝑔 = 𝑝 %𝑄 ). 1○ 2○ 3○ illustrate the three intra-node communication steps, where the sent
data-blocks are colored. (2) presents the data status in receive (𝑅) and temporary (𝑇 ) buffers after the intra-node communication,
where 𝑅 holds the data-blocks destined the processes within 𝑁 0. 4○ 5○ depict two steps for inter-node communication. a○ and
b○ are two communication patterns (matching Figure 5). Finally, each process receives the required data-blocks in 𝑅.

Second, it features two tunable parameters, one for the intra-node
communication and the other for inter-node communication.

The two distinct communication phases of ParLinNa exhibit
unique performance characteristics. In the intra-node phase, data
transfers occur within localized process groups. Due to two key fac-
tors, the limited number of participating processes and the minimal
cost of data exchange at this stage, performance in this phase is pri-
marily determined by latency considerations rather than bandwidth
constraints. Therefore, to optimize performance, ParLinNa employs
ParLogNa for intra-node communication. While the ParLogNa im-
plementation results in increased data exchange between processes,
the cost of these transfers is negligible within a node. This design
choice effectively reduces latency overhead, leading to improved
overall performance. Conversely, the inter-node phase is charac-
terized by aggregated data transfers occurring at the node level,
wherein processes within a single node engage in comprehensive
communication with all processes residing on other nodes. This
scenario introduces bandwidth limitations due to the shared na-
ture of network resources among co-located processes, leading
to bandwidth-constrained communication patterns. Therefore, to
keep the number of data exchanges in the network to a minimum,
we design ParLinNa to use the linear-time scattered algorithm for
inter-node communication. It therefore places ParLinNa within the
category of linear algorithms, as its primary data-intensive com-
munication operations are executed using a linear approach.

ParLinNa algorithm then incorporates dual parameterization
mechanisms to optimize communication efficiency. For intra-node
communication, it employs a radix parameter, which establishes
an equilibrium between latency and bandwidth utilization. Concur-
rently, for inter-node communication, it implements a batch_size
parameter. It waits (blocks) for all the requests in one batch to
be completed (in a non-blocking way) before moving on to the
next batch. This approach regulates the concurrent network com-
munication requests, achieving a balanced state between blocking

and non-blocking communication patterns, thus relieving potential
network congestion. These configurable parameters collectively
facilitate performance optimization. Finally, we also introduce two
implementations of ParLinNa based on the distinct communication
patterns of the inter-node (see Section 4.2): (1) staggered ParLinNa
and (2) coalesced ParLinNa.

It is important to note that while ParLogNa can be configured to
operate with a linear number of rounds using higher radix values,
its fundamental store-and-forward architecture results in blocking
operations. Unlike scattered, which delivers data-blocks directly to
their destinations using non-blocking operations. As we will see
later in Section 5, this blocking characteristic reduces ParLogNa’s
effectiveness for a wide range of input configurations when com-
pared to ParLinNa, where the degree of blocking and non-blocking
data exchanges can be tuned by the 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 parameter.

4.1 Hierarchical ParLinNa algorithm phases
ParLinNa algorithm is composed of intra-node and inter-node data
exchanges, which we now present in detail.

Intra-node communication. With a total of 𝑃 = 𝑄 · 𝑁 processes,
where 𝑄 represents the number of processes per node and 𝑁 rep-
resents the total number of nodes, the intra-node data exchange
phase consists of 𝑁 concurrent all-to-all exchanges, each of which
involves 𝑄 processes. In standard all-to-all, each process (𝑝) must
send one data-block (𝑖) to process 𝑖 and receive one data-block (𝑝)
from process 𝑖 , with the total number of data-blocks equalling the
number of processes (𝑃 ). In our intra-node communication, all 𝑃
processes are logically grouped into𝑁 groups (indexed 0, . . . , 𝑁 −1),
each containing 𝑄 processes. Subsequently, we group the 𝑃 data-
blocks into 𝑁 groups, with each group handling 𝑄 data-blocks. We
then perform all-to-all exchanges concurrently in each group using
the ParLogNa algorithm. Figure 3 (b) shows an example involving
three nodes, where we perform three concurrent 𝑄 ×𝑄 all-to-all



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

P3
03 30
13 40
23 50
33
43
53
63 36

46
56

P6

Initial data

P0

30
40
50

33
43
53

36
46
56

R T

P3 P3
03 30

40
50

33
43
53

36
46
56

R T

P6
P0P3

03 30
13 40

50
33
43
53

36
46
56

R T

P6
P0P3

03 30
13 40
23 50
33
43
53

36
46
56

R T

P0
P6 P3

03 30
13 40
23 50
33
43
53
63 36
73 46

56

P0
P6 P3

03 30
13 40
23 50
33
43
53
63 36
73 46
83 56

P0
P6

R T R T R T

P6
P0P3

03 30
13 40
23 50
33
43
53

36
46
56

R T

P6
P0P3

03 30
13 40
23 50
33
43
53
63 36
73 46
83 56
R T

(a) Staggered (b) Coalesced

Figure 5: Two inter-node communication patterns: (a) stag-
gered and (b) coalesced. Taking one process in the first node
𝑃3 as an example, each process in (a) sends/receives one data-
block to the same destination per round, requiring (𝑁 − 1) ·𝑄
rounds. In (b), each process sends/receives 𝑄 data-blocks per
round, requiring (𝑁 − 1) rounds. See Section 4.2 for details.

exchanges for each node. Our approach differs from an explicit
approach, which creates a local sub-communicator for every group
by splitting the MPI communicator using MPI_Comm_split. During
the all-to-all exchange, each process is aware only of the size of
the data block destined for itself. Therefore, 𝑄 local processes per-
form only a local all-to-all exchange within the group whose index
matches the node ID (𝑛) (see Figure 3 (a)). Unlike our approach,
which allows for a simultaneous all-to-all exchange within every
group. Our implicit approach avoids the overhead of creating new
local communicators and also better prepares the data-blocks for
the subsequent inter-node data exchange.

We note that to achieve our implicit strategy, a metadata ex-
change is required to exchange the data-block sizes destined for
processes in other nodes. Fortunately, the intra-node communi-
cation phase of the ParLinNa algorithm employs the ParLogNa al-
gorithm, which internally includes a metadata exchange phase,
requiring no extra cost. Finally, we note that the intra-node com-
munication phase in ParLinNa is implemented through ParLogNa
and is thus tunable with a radix 𝑟 ∈ [0, . . . , 𝑄].

Inter-node communication. This phase conducts all-to-all com-
munication between nodes. In this phase, all 𝑄 processes within
a node must communicate with all 𝑄 processes in another node.
The communication process pairs have the same number of group
ID (𝑔 = 𝑝 % 𝑄). This follows the 𝑄-port model, in which every
𝑄 point-to-point data exchange is delivered simultaneously. Each
node serves as a communication port, transmitting a 1/𝑄 message to
the corresponding process in another node. For example, in Figure 4
4○, node 𝑁 0 needs to send all green data-blocks in 𝑇 to node 𝑁 2,
while receiving all orange data-block in 𝑅 from node 𝑁 1. In this
case, each process sends its own𝑄 orange data-blocks to the match-
ing process. The inter-node communication utilizes the scattered
algorithm with an adjustable batch_size to manage the communi-
cation load. This algorithm divides the communication requests
into manageable batches, executed sequentially to mitigate network
congestion. The batch_size parameter determines the batch size,
which can significantly influence the overall performance.

This inter-node communication is analogous to the concept of
inter-group communication in MPI, implementable by using the
MPI_Intercomm_create routine, creating an inter-communicator

Algorithm 2 Coalesced ParLinNa Algorithm
1: Allocate a temporary buffer 𝑇 with necessary length;
2: Compute rank id in each group: 𝑔 = 𝑝 % 𝑄 ;
3: Compute node id: 𝑛 = 𝑝 / 𝑄 ;
4: Allocate rotation array 𝐼 for each process 𝑝;
5: 𝐼 [𝑖 ∗𝑄 + 𝑗] = 𝑖 ×𝑄 + (2 ×𝑔 − 𝑗 +𝑄) %𝑄 ; 𝑖 ∈ [0, 𝑁 ], 𝑗 ∈ [0, 𝑄];
6: for 𝑥 ∈ [0,𝑤] do
7: for 𝑧 ∈ [1, 𝑟 ] do
8: n = 0;
9: for 𝑖 ∈ [0, 𝑃] whose 𝑥 th digit of r-base is 1 do
10: sd[𝑛++] = 𝑛 ×𝑄 + (𝑔 + 𝑖) % 𝑄 /* sd: the array for

𝑛 send data-block indices*/
11: end for
12: sendrank = 𝑛 ×𝑄 + (𝑔 − 𝑧 × 𝑟𝑥 +𝑄) % 𝑄 ;
13: recvrank = 𝑛 ×𝑄 + (𝑔 + 𝑧 × 𝑟𝑥 ) % 𝑄 ;
14: Send metadata to sendrank and receive updated metadata

from recvrank;
15: Send sent data-block 𝐼 [sd[𝑖]] (𝑖 ∈ [0, 𝑛]) to sendrank;
16: Receive data-block 𝑖 into 𝑇 from recvrank;
17: end for
18: end for
19: Rearrange 𝑇 to removing empty data-blocks;
20: for (𝑖𝑖 = 0; 𝑖𝑖 < 𝑁 ; 𝑖𝑖 + = batch_size) do
21: for 𝑖 ∈ [0, batch_size] do
22: nsrc = (𝑛 + 𝑖 + 𝑖𝑖) % 𝑄 ; src = nsrc ×𝑄 + 𝑔;
23: Receive data-blocks ranging from nsrc to (nsrc +𝑄) from

src;
24: end for
25: for 𝑖 ∈ [0, batch_size] do
26: ndst = (𝑛 − 𝑖 − 𝑖𝑖 +𝑄) % 𝑄 ; dst = ndst ×𝑄 + 𝑔;
27: Send data-blocks ranging from ndst to (ndst +𝑄) to ndst;
28: end for
29: Wait for communication completion using MPI_Waitall;
30: end for

to define the local and remote groups. All processes in the local
group exchange data with all processes in the remote group. How-
ever, MPI’s inter-group approach is limited to only communication
between exactly two groups, posing a constraint on scalability and
flexibility. In contrast, we implement the inter-node exchange using
point-to-point data exchanges, explicitly computing the ranks of all
point-to-point exchange pairs, allowing our approach to support
concurrent inter-communication among multiple groups.

4.2 Staggered and coalesced ParLinNa
To further optimize the ParLinNa algorithm across diverse com-
munication scenarios, we develop two variants based on distinct
inter-node communication patterns (see Figure 5): (a) staggered
ParLinNa and (b) coalesced ParLinNa. The staggered communica-
tion pattern involves sequentially exchanging one data-block per
communication round with the target process, completing the com-
munication within two nodes over 𝑄 rounds (see Figure 5 (a)).
Inter-node communication requires (𝑁 − 1) exchanges between
nodes. This method, therefore, requires a total of 𝑄 · (𝑁 − 1) com-
munication rounds. Conversely, the coalesced one consolidates the
transmission, sending all 𝑄 data-blocks in a single round to the



Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

Algorithm 3 Staggered ParLinNa Algorithm
1: Same intra-node communication with coalesced ParLinNa
2: for (𝑖𝑖 = 0; 𝑖𝑖 < 𝑃 ; 𝑖𝑖 + = batch_size) do
3: for 𝑖 ∈ [0, batch_size] do
4: 𝑔𝑖 = (𝑖𝑖 + 𝑖)/𝑛; 𝑔𝑟 = (𝑖𝑖 + 𝑖) % 𝑛; 𝑛𝑠𝑟𝑐 = (𝑔 + 𝑔𝑖) % 𝑁 ;

/* 𝑔: rank id in each node; 𝑛: node id. */
5: if (𝑛𝑠𝑟𝑐 ! = 𝑔) then
6: 𝑑 = 𝑛𝑠𝑟𝑐 ∗𝑄 + 𝑔𝑟 ; 𝑠𝑟𝑐 = 𝑛𝑠𝑟𝑐 ∗ 𝑛 + 𝑔;
7: Receive data-blocks 𝑑 from src using MPI_Irecv;
8: end if
9: end for
10: for 𝑖 ∈ [0, batch_size] do
11: 𝑔𝑖 = (𝑖𝑖 + 𝑖)/𝑛; 𝑔𝑟 = (𝑖𝑖 + 𝑖) % 𝑛; 𝑛𝑑𝑠𝑡 = (𝑔 − 𝑔𝑖 + 𝑁 ) % 𝑁 ;
12: if (𝑛𝑑𝑠𝑡 ! = 𝑔) then
13: 𝑑 = 𝑛𝑑𝑠𝑡 ∗𝑄 + 𝑔𝑟 ; 𝑑𝑠𝑡 = 𝑛𝑑𝑠𝑡 ∗ 𝑛 + 𝑔;
14: Send data-blocks 𝑑 to dst using MPI_Isend;
15: end if
16: end for
17: Wait for communication completion using MPI_Waitall
18: end for

target process (see Figure 5 (b)). This approach yields (𝑁 − 1) com-
munication rounds. Theoretically, the coalesced variant is effective
for short-message scenarios, where the number of communication
rounds dominates the performance. In contrast, the staggered one
is more appropriate for bandwidth-bound long-message scenarios.

Algorithms: Algorithms 3 and 2 provide pseudocode for the
staggered and coalesced ParLinNa, respectively. Both share the
same intra-node communication phase, detailed in lines 5 to 18 of
Algorithm 2. The inter-node communication phases are outlined
in lines 20 to 30 of Algorithm 2 for the coalesced method and lines
2 to 18 of Algorithm 3 for the staggered method. It is important
to note that after the intra-node communication, non-continuous
data-blocks are stored in the temporary buffer𝑇 . Hence, a local data
rearrangement is necessary to eliminate any empty intermediate
segments in 𝑇 , thus streamlining the buffer for efficient coalesced
inter-node communication.

5 EVALUATION
We thoroughly evaluated our algorithms using micro-benchmarks
on two production supercomputers: Polaris at Argonne National
Laboratory and Fugaku at RIKEN R-CCS. Polaris’ 560 nodes have
32-core AMD CPUs and 4 Nvidia A100 GPUs each, totaling a peak
performance of 44 petaflop/s. A Slingshot-based Dragonfly topol-
ogy connects the nodes. The 488 Pflop/s Fugaku fields 158,976 com-
pute nodes, each hosting 48 user-accessible A64FX cores. Fugaku’s
network is a 6D-torus Tofu-D interconnect. Polaris utilizes Cray
MPICH version 8.1.16, whereas Fugaku employs FujitsuMPI version
4.12.0, which is based on OpenMPI.

To demonstrate the efficacy of ParLogNa and ParLinNa, we eval-
uate their performance against vendor-optimized, closed-source
implementations of MPI_Alltoallv in Section 5.1 and Section 5.2.
In addition to assessing the performance of standard non-uniform
all-to-all communication algorithms, we implement the four algo-
rithms in OpenMPI andMPICH (detailed in Section 2). Subsequently,
we compare our algorithms, optimized with the best parameter

(d)

(e)

(f)

(a)

(b)

(c)

T
im

e 
(m

s)
T

im
e 

(m
s)

T
im

e 
(m

s)

Radix (r) Radix (r)

P = 2048, S = 512, Polaris P = 2048, S = 512, Fugaku

P = 2048, S = 4096, Polaris P = 2048, S = 4096, Fugaku

P = 2048, S = 16384, Polaris P = 2048, S = 16384, Fugaku

Figure 6: Three trends of ParLogNa on Polaris and Fugaku

configurations, against the top-performing MPI_Alltoallv bench-
mark to demonstrate the efficiency of our approach (Section 5.3).
Finally, we demonstrate the effectiveness and generalizability of
our algorithm using two standard data distributions (Section 5.4).

In all the aforementioned experiments, we vary 𝑃 , 𝑟 , and maxi-
mum size of data-blocks (𝑆). By studying these parameters, we aim
to determine optimal settings and evaluate how well our algorithms
scale and adapt to various conditions. All our experiments are per-
formed for at least 20 iterations, and we report the median and the
standard deviation (using error bars). For Polaris and Fugaku, we
utilized 32 processes per node in our experiments.

5.1 Performance analysis of ParLogNa
In our experiments, every process generates data-blocks whose
sizes follow the continuous uniform distribution. This distribution
ensures that data-block sizes are randomly selected and uniformly
sampled between 0 and 𝑆 , thus yielding an average data block of
size 𝑆/2. To understand the performance of ParLogNa, we varied 𝑆
from 16 bytes to 16 KiB (generated using FP64 vectors), 𝑟 from 2 to
𝑃 , and 𝑃 from 512 to 16,384.

Three performance trends: Based on our experimental results,
we identify three distinct performance trends for ParLogNa when
increasing radix 𝑟 , which are consistent across all process counts
(𝑃 ): (1) for small 𝑆 ranging from 2 to 512 bytes, the performance
of ParLogNa exhibits an increasing trend with increasing radices.
(2) For medium 𝑆 ranging from 512 to 8 KiB, the performance of
ParLogNa follows a U-shaped trend. (3) For large 𝑆 exceeding 8 KiB
on Polaris and 32KiB on Fugaku, the performance of ParLogNa
shows a decreasing trend with increasing radix values. We can see
these three trends in Figure 6 for 𝑃 = 2,048. Our measured ideal
𝑟 is around 2 for the first trend involving small messages. This
is attributed to small-sized message communication being domi-
nated by latency, which requires minimal communication rounds
to achieve optimal performance. The U-shaped trend suggests a
balance between latency and bandwidth is sought for middle-sized
message communication. Prior work [13] has shown that 𝑟 ≈

√
𝑃

achieves this balance, minimizing the overall communication cost.



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

P = 2048, Fugaku

(c)

MPI_Alltoallv
ParLogNa 

6 6 6 12 12
46

46
46

46
64

64

(d)

P = 4096, Fugaku

MPI_Alltoallv
ParLogNa 

12 8
8

18
18

64
64

64
96

96
96

(e)

P = 8192, Fugaku

MPI_Alltoallv
ParLogNa 6 6 18 22

28
96

22
96

96
96

96

(f)

P = 16384, Fugaku

MPI_Alltoallv

ParLogNa 22
28

28
128

128
128

128
128

128
128

P = 8192, Polaris

6 2 22 28
96

96
96

96
128

128

MPI_Alltoallv

ParLogNa 

8192

(b)(a)

MPI_Alltoallv

ParLogNa 

P = 4096, Polaris

6 8

8 8
18

18
64

64
64

96
4096

S: Max data-block size (bytes) S: Max data-block size (bytes) S: Max data-block size (bytes)

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Figure 7: Comparing ParLogNa with MPI_Alltoallv on Polaris and Fugaku. Detailed analysis provided in Section 5.1.

512 1024 2048 8192 16384

16

32

64

128

256

512

1024

2048

4096

8192

16384

4096
2 168

2 176

2 172

2 160

2 148

2 172

2 188

2 180

8 120

16 96

16 80

2 307

2 256

2 256

2 195

2 192

2 256

2 256

4 192

28 128

28 90

34 64

2 1128

2 1024

2 1024

2 1024

2 870

2 1228

2 1433

2 1200

6 1220

6 1024

44 192512384

2 2108

2 2048

2 2048

2 2048

2 1638

2 2048

2 2048

2 2450

12 2048

15 778

341024

2 4096

2 4096

2 4096

2 4096

2 2867

2 4915

2 4915

2 6144

2 3686

10 2048

44 2048

2 9012

2 7373

2 6554

2 7373

2 9000

2 8192

2 9830

4 4096

20 2048

28 512

Process count (P)

M
ax

 d
at

a-
bl

oc
k 

si
ze

 (b
yt

es
) (

S)

(a) Polaris

512 1024 2048 8192

16

32

64

128

256

512
1024

2048

4096

4096
2 36

2 50

2 52

2 50

2 49

2 44

36

2 84

2 108

2 102

2 92

2 112

2 84

4 64

2 205

2 237

2 240

2 210

2 198

2 192

4 160

2 460

2 512

2 512

2 384

2 384

2 384

3 358

34 2450

2 1228

2 1434

2 1536

2 1126

2 1024

2 1024

2 1024

7 921

2 4915

2 4915

2 4710

2 4505

2 4096

2 4000

2 4096

6 3072

88 1024

M
ax

 d
at

a-
bl

oc
k 

si
ze

 (b
yt

es
) (

S)

256

4

(b) Fugaku

Figure 8: Ranges of radix where ParLogNa outperforms
MPI_Alltoallv on (a) Polaris and (b) Fugaku, visualized
through a series of heatmaps. Each heatmap (top box) corre-
sponds to a 𝑃 and 𝑆 pair, where the intensity of the red color
indicates the degree of performance advantage offered by
ParLogNa. The bottom boxes indicate the entire radix range
(from 2 to 𝑃). Refer to Section 5.1 for details.

The bandwidth dominates the performance for large message com-
munication, where the total transferred data size across all rounds
becomes the critical factor. Therefore, 𝑟 ≈ 𝑃 is the sweet spot, as it

minimizes the total transmitted message size. Overall, the ideal 𝑟
increases when 𝑆 increases, transitioning from a latency-dominated
regime to a bandwidth-dominated regime.

Performance comparison: Figure 7 shows our comparisons of
ParLogNa against MPI_Alltoallv. The performance of ParLogNa
is presented through box plots, each representing the range of
performance across various radices ∈ [2, . . . , 𝑃]. Our measured
ideal 𝑟 for each scenario is highlighted beneath its respective box,
aligning with the above-observed trends of increasing 𝑟 . We see
that ParLogNa outperforms MPI_Alltoallv when 𝑆 is no more
than 2 KiB on Polaris and 16 KiB on Fugaku. Particularly, ParLogNa
demonstrates significant performance advantages when 𝑆 is less
than 512 B on Polaris and 2KiB on Fugaku. For instance, when
𝑃 = 8,192 and 𝑆 = 16 bytes, ParLogNa with ideal 𝑟 is 51.8/1.78 =

29× and 408.33/5.79 = 70.48× faster than MPI_Alltoallv on Polaris
and Fugaku, respectively. ParLogNa performs effectively with mid-
ranged 𝑆 . For example, it achieves 5.62× and 7.26× speedup on
Polaris and Fugaku when 𝑆 = 1,024 and 𝑃 = 8,192. While larger 𝑆
shows reduced performance on Polaris, ParLogNa still manages a
speedup of 1.67× on Fugaku when 𝑃 = 16,384 and 𝑆 = 8,192.

Radix selection of ParLogNa: We finally summarize all our
experiments in Figure 8, which is developed to show the optimal
radix range of ParLogNa that outperforms the vendor-optimized
implementation of MPI_Alltoallv. In this figure, 𝑃 is represented
on the x-axis and 𝑆 on the y-axis. A combined shape containing
two rectangles is presented for all combinations of 𝑃 and 𝑆 . The
longer rectangle represents the entire range of radices for ParLogNa,
ranging from 2 to 𝑃 . The shorter rectangle, nested within the longer
one, represents the specific range of radices for which ParLogNa
outperforms MPI_Alltoallv. Additionally, the shorter rectangle is
depicted as a heatmap, where the intensity of the red color indicates
the degree of performance improvement achieved by ParLogNa. A
stronger red color signifies a higher performance gain offered by
ParLogNa. The previously mentioned trends can be observed from
the heatmap, reinforcing the relationship between the optimal radix
selection, 𝑃 , and 𝑆 . These figures provide a concise and visually
intuitive representation of the performance landscape, enabling



Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

HCoalesced intra Coalesced Inter Staggered intra Staggered Inter

(c) P = 16384

12, 6
8, 8 20, 14 28, 30 32, 30 28, 28 30, 32

32, 32
32, 32

32, 32

128 64 64 64 32
8

16 8
4

2

64
16

2
16

16
8

32
128

128
128(b) P = 8192

1024

12, 22
32, 32

32, 30
30, 32

32, 32

10, 10

128

8, 6

256

8, 12

64

22, 20

16

20, 12

16, 32

512 32 32 32 256 32 64
64

16
2

128
64

16
32

32
4

4

(a) P = 2048

8, 8 4, 4
4, 4 4, 4

8, 8
12, 10 24, 28

32, 32
30, 30

32, 32
32, 32

64

64

64
64

64
32

32 4

32

8

4

1024
512

256 512 1024 512 1024 128
128

64
256

(a) P = 4096
512

4, 4 4, 4 2, 8 12, 12 8, 28 22, 26 30, 24
28, 32

30, 32
24, 28

32, 32
128 64 64 16

32 32 32
32

16
8

32
1024 512

1024 1024 1024 1024 256 512
512

64

S: Max data-block size (bytes) S: Max data-block size (bytes) S: Max data-block size (bytes)

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Figure 9: Comparing coalesced and staggered ParLinNa algorithms on Fugaku. Intra-node and inter-node data exchanges are
plotted separately using box plots for each algorithm.

4000
P = 8192

1000
250

60
20

P = 4096
1000

250

60

20

S: Max data-block size (bytes) S: Max data-block size (bytes)

Figure 10: Breakdowns of coalesced (left bar) and staggered
(right bar) ParLinNa algorithms on Fugaku.

us to make informed decisions when selecting suitable radices of
ParLogNa for given 𝑃 and 𝑆 .

5.2 Performance analysis of coalesced and
staggered ParLinNa

Both coalesced and staggered ParLinNa employ the ParLogNa algo-
rithm for intra-node communication and the scattered algorithm
for inter-node communication. The ParLogNa algorithm includes a
configurable parameter, radix (𝑟 ), which can be adjusted from 2 to
𝑄 . Similarly, the scattered algorithm features a tunable parameter,
batch_size, which varies from 1 to (𝑁 − 1) for the coalesced variant
and from 1 to ((𝑁 − 1) · 𝑄) for the staggered variant. Figure 9
presents the performance of these algorithms on Fugaku using box
plots. In the experiments, the number of processors (𝑃 ) was varied
from 4,096 to 16,384, and the message size (𝑆) from 16 to 16 KiB.
Each box plot, distinguished by unique colors, represents either the
intra-node or inter-node communication performance with its cor-
responding tunable parameter. Green and purple boxes depict the
intra-node and inter-node phases of the staggered variant, while or-
ange and brown boxes illustrate these phases for the coalesced one.
The ideal parameters for each configuration are indicated beneath
each corresponding box plot with a matching color.

Parameter selection analysis: Figure 9 illustrates the trends
in intra-node and inter-node communications under coalesced and
staggered approaches using four box plots. For each box, the values
of 𝑃 and 𝑆 are fixed, while the variations across different radix and
batch_size configurations are summarized. The optimal values for

these two parameters are annotatedwith colored text corresponding
to each box, providing an intuitive visualization of the parameter
selection trends. The figure explores a range of radix values from 2
to 𝑃 and batch_size from 1 to 𝑃 . From this figure, we observe that
the choice of optimal radix for intra-node communication does not
follow a strict pattern; however, smaller radices generally perform
better for smaller 𝑆 (under 1 KiB), while larger radices are better for
larger 𝑆 . The observed pattern is reasonable because communication
involving small message sizes tends to be more affected by the total
number of communication rounds compared to communication
with larger message sizes. For inter-node communication, varying
the batch_size (𝐵) shows a clear trend with increasing 𝑆 , where
larger 𝑆 typically favors smaller 𝐵. For example, at 𝑃 = 8,192, the
ideal 𝐵 for staggered ParLinNa (indicated by the brown box) is 1,024
and 2 at 𝑆 = 16 and 16KiB, respectively. Moreover, as 𝑃 increases,
the ideal 𝐵 for the same 𝑆 tends to decrease. For example, with
𝑆 = 512, the ideal 𝐵 for 𝑃 = 4,096, 8,192, and 16,384 is 1,024, 256,
and 8, respectively. The choice of batch_size significantly impacts
performance, particularly for the staggered variant, which makes
more communication requests than the coalesced configuration.

Performance comparison: We also observe that the coalesced
ParLinNa significantly outperforms the staggered one, particularly
for small message sizes 𝑆 . The staggered algorithm only exhibits
competitive performance when 𝑆 is at least 8 KiB. For instance,
at 𝑃 = 4,096 and 𝑆 = 16, the coalesced is 17.06× faster than the
staggered. Conversely, at 𝑆 = 16,384 bytes, the staggered achieves
a 1.23× speedup compared to the coalesced. Figure 10 provides a
detailed breakdown of the coalesced (left-bar) and staggered (right-
bar) algorithms. The algorithms are divided into six components:
(1) prepare-cost, which includes all preparatory steps (see lines 1-7
and 11-13 in Algorithm 2); (2) and (3) correspond to metadata-cost
(line 16) and data-cost (line 17), respectively; (4) replace-cost, which
covers the cost of inter-data copying in each round (line 18); (5) data-
rearrange time (line 21), applicable only to the coalesced algorithm;
(6) inter-node comm cost (lines 22-32). The figure illustrates that
the inter-node comm cost for the staggered is significantly higher
than that for the coalesced.

5.3 Comparison with vendor-optimized MPI
To evaluate the efficiency of our proposed algorithms, we bench-
marked the performance of four standard non-uniform all-to-all
algorithms from MPI libraries (detailed in Section 2). Figure 11
presents a comparison of the default MPI_Alltoallv on Fugaku



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

H

(a) P = 2048

MPI_Alltoallv
OMPI_Paiswise

OMPI_Linear

Exclusive_or

Tunable_Scattered

512
2048 128 256 1024

128 64 64
64

1
2

MPI_Alltoallv OMPI_Paiswise OMPI_Linear Exclusive_or Scattered

128
256 512 1024 512

128 128 128 64 2 4

(a) P = 4096 (b) P = 8192
4096

2048 2048 1024 64
128 32 8 8 2 1

(c) P = 16384

1024
512 256 128 64

128 128 128
32 1

1

S: Max data-block size (bytes) S: Max data-block size (bytes) S: Max data-block size (bytes)

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Figure 11: Benchmarking the non-uniform all-to-all implementations in OpenMPI and MPICH on Fugaku.

(f) P = 4096, Fugaku

60

250

30.0
(a) P = 1024, Polaris

1000(b) P = 2048, Polaris

8192 16384

30.0

(c) P = 512, Fugaku
16

60

16

60

250

1000
(d) P = 1024, Fugaku

(g) P = 8192, Fugaku

60

250

1000

4000

(e) P = 2048, Fugaku

16

60

250

1000

P = 16384

Z

60

250

1000

4000 (h) P = 16384, Fugaku

S: Max data-block size (bytes)

HCoalesced ParLinNa Staggered ParLinNa ParLogNaMPI_Alltoallv Scattered

S: Max data-block size (bytes) S: Max data-block size (bytes) S: Max data-block size (bytes)

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Ti
m

e 
(m

s)
, l

og
-s

ca
le

Figure 12: Comparing the proposed algorithms with the top-performing benchmarks. Refer to Section 5.3 for analysis.

and Polaris. Meanwhile, the performance of the scattered algorithm
with a tunable batch_size (𝐵) is displayed using a box plot. We ob-
serve that OpenMPI’s linear algorithm, which is a blocking linear
algorithm, performs the worst, particularly for larger 𝑃 . The pair-
wise, exclusive-or, and default MPI_Alltoallv algorithms exhibit
similar performance. Notably, when configured with ideal 𝐵, the
scattered algorithm outperforms the others in most scenarios.

Performance comparison: Consequently, we compared our
proposed algorithms, involving ParLogNa, coalesced and staggered
ParLinNa, against both the scattered algorithm and the default
MPI_Alltoallv. Each algorithm was configured with its ideal pa-
rameter. Figure 12 illustrates this comparison, where all proposed
algorithms surpass the default MPI_Alltoallv across all scenarios
and outperform the scattered algorithm in most instances. Specifi-
cally, the performance improvements with small message sizes 𝑆
were notable, achieving maximum 60.60× (ParLogNa), 138.59× (coa-
lesced), and 12.29× (staggered) speedups compared to MPI_Alltoallv
on Fugaku. Among these, the coalesced ParLinNa consistently
demonstrated the highest performance across all scenarios. For
instance, at 𝑃 = 16,384 on Fugaku, it is 42.08× and 14.61× faster
than MPI_Alltoallv and the scattered algorithm at 𝑆 = 16; and it
maintained 2.20× and 2.14× improvements at 𝑆 = 8,192. Addition-
ally, although our proposed algorithms perform suboptimally with
large 𝑆 (larger than 2KiB), the coalesced one achieves 11.68× and
2.71× speedup at 𝑆 = 64 and 2KiB.

5.4 Standard distributions
In addition to the uniform distribution presented previously, we
further assess the effectiveness and generalization of our algorithms
by validating them against two standard distributions: a power-law
(exponential) distribution and a normal (Gaussian) distribution. Fig-
ure 13 (a) and (b) depict the communication data for process 0
with 𝑃 = 4,096 on Fugaku, following the two distributions, with a
maximum data block-size of 1,024 bytes.

Normal: Figure 13 (c) presents a weak scaling performance com-
parison of our algorithms against MPI_Alltoallv on Fugaku, with
workload size following a normal distribution. The results show that
all of our algorithms outperform MPI_Alltoallv, with coalesced
ParLinNa demonstrating the best performance in almost all cases.
In contrast, staggered ParLinNa performs worse than the other
two proposed algorithms. For instance, at 𝑃 = 4,096, ParLogNa,
coalesced ParLinNa, and staggered ParLinNa are 3.21×, 3.63×, and
1.57× faster than MPI_Alltoallv, respectively. This observation is
consistent with the results obtained under the uniform distribution.

Power-law: Similarly, Figure 13 (d) shows results for the power-
law workload distribution, which is characterized by the rarity of
large-sized data-blocks and the sparsity of the data distribution.
From the figure, we can draw conclusions similar to those made
for the uniform and normal distributions. Notably, both ParLogNa
and coalesced ParLinNa significantly outperform MPI_Alltoallv,
particularly at large scales.



Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

(a) P = 4096, Normal (b) P = 4096, Power-law

(d) Fugaku, Power-law

HMPI_Alltoallv ParLogNa Coalesced ParLogNa Staggered ParLogNa

(c) Fugaku, Normal

Figure 13: (a) histogram to show normal data distribution
used (mean: 1,000, and standard deviation: 240) and (b) shows
power-law data distribution (exponent: 0.95); (c) and (d)
present a performance comparison for them.

(a) (b)
ParLogNa
ParLinNa

ParLogNa
ParLinNa

Figure 14: Performance of applying our algorithms to an FFT
HPC workload with two different input sizes N1 and N2.

6 APPLICATIONS
In this section, we assess the performance of our algorithms using
real-world applications, including Fast Fourier Transform (FFT)
(see Section 6.1) and path-finding (see Section 6.2).

6.1 Fast Fourier transform
Fast Fourier transform (FFT) computations are crucial for many
scientific domains, such as fluid dynamics and astrophysics [9].
Parallel FFT is characterized by performing three matrix transposes
using all-to-all exchanges. FFW3, an open-source parallel FFT li-
brary, distributes the sub-problems evenly among processes. When
the problem sizeN is not an integer multiple of 𝑃2, non-uniform all-
to-all exchanges are employed. The N data type is fftw_complex,
comprising two FP64 values representing a complex number’s real
and imaginary components.

We perform two experiments to test the effectiveness of our
algorithms, featuring different non-uniform data distributions using
two values of N : (1) N1 = ⌈0.78125 · 𝑃⌉ · ⌈𝑃 · 0.625⌉ · 8. This setup
ensures that processes with ranks lower than ⌈𝑃 ·0.625⌉ (referred to
as worker) are assigned data, while the remaining ranks receive no
data. Each worker fills the first ⌈𝑃 · 0.78125⌉ data-blocks with 8 FP64
values. (2) N2 = ((𝑃 − 1) · 32 + 8) · 𝑃 . This leads to a near-uniform
distribution where each process (except the last) transmits 64 FP64
values, and the last one transmits 16 FP64 values.

Figure 14 presents the comparative results of our algorithms
against MPI_Alltoallv, using the two configurations mentioned

(b) Fugaku(a) Polaris
Communication (MPI_Alltoallv)

Communication (ParLogNa)
Communication (ParLinNa)

Total time (MPI_Alltoallv)

Total time (ParLogNa)
Total time (ParLinNa)

Communication (MPI_Alltoallv)

Communication (ParLogNa)
Communication (ParLinNa)

Total time (MPI_Alltoallv)

Total time (ParLogNa)
Total time (ParLinNa)

Figure 15: Performance of applying our algorithms to path
finding (𝑃 = 8,192).

above on Fugaku. We report the application runtime for the three
approaches, dominated by all-to-all exchanges. For both experi-
mental setups, all our algorithms outperform MPI_Alltoallv for
all process counts (𝑃 ). Consistent with our observations made in
Section 5.3, the ParLinNa (coalesced) steadily outperforms the other
algorithms. Additionally, our proposed algorithms demonstrate bet-
ter performance for N1, which involves a smaller problem size. For
example, when 𝑃 = 8,192, the ParLinNa (coalesced) is 9.42× and
4.01× faster than MPI_Alltoallv for N1 and N2, respectively.

6.2 Graph Mining: path finding
We evaluate our algorithms by applying them to a popular graph
mining algorithm that computes all reachable paths in a graph, also
known as the transitive closure of a graph [25, 28]. The transitive
closure (TC) of a graph can be computed through a classic fixed-
point algorithm that repeatedly applies a relational algebra (RA)
kernel to a graph G. This operation discovers paths of increasing
length within the graph. The process continues until no new paths
can be identified, reaching the fixed point. We use the MPI-based
open-source library for parallel relational algebra [12, 17, 23, 24],
which utilizes MPI_Alltoallv in each iteration of the fixed-point
loop to shuffle data. Our proposed algorithms maintain the same
function signature as MPI_Alltoallv, and hence, they can be seam-
lessly substituted in its place. We use a graph with 1,014,951 edges,
sourced from the Suite Sparse Matrix Collection [10]. This graph
undergoes repeated all-to-all across more than 5,800 iterations to
reach the fixed point.

Figure 15 presents the strong scaling performance comparison
of our proposed algorithms, configured ideally as described in Sec-
tion 5, against the vendor-optimized MPI_Alltoallv, using the
same graph on Polaris (a) and Fugaku (b). In both subfigures, we
depict the communication overhead with bar charts and the total ex-
ecution timewith line charts. These figures highlight the critical role
of all-to-all communication in this application. The results demon-
strate that our proposed algorithms outperform MPI_Alltoallv in
most cases. For instance, at 𝑃 = 8,192, ParLogNa achieves speedups
of 5.98× on Polaris and 5.80× on Fugaku, while ParLinNa (coa-
lesced) delivers even greater improvements of 7.96× and 11.09×,
respectively. Additionally, ParLinNa (coalesced) generally surpasses
ParLogNa in performance, with the exceptions being cases that
could be further optimized through parameter tuning. These ob-
servations align with those discussed in Section 5. It is worth
noting that, despite the application’s limited scalability, our pro-
posed algorithms still provide significant performance gains over
MPI_Alltoallv on both machines.



HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA Ke Fan et al.

7 RELATEDWORK
While substantial research efforts [14, 26, 33, 34] went into optimiz-
ing all-to-all for uniform messages, the exploration of non-uniform
data-loads has received comparatively little attention. Most relevant
to our work are studies [11, 36], which adapted Bruck’s algorithm
(with a radix of 2) for non-uniform all-to-all.

Bruck variants: Träff et al. [33] presented two improvements
over Bruck, termed modified Bruck and zero-copy Bruck. The for-
mer omits the final rotation phase by rearranging data-blocks in
an initial rotation. The latter aims at reducing internal memory
duplications. Cong et al. [36] eliminates the shifting of data-blocks
during the initial rotation by employing an index array that stores
the desired order of data-blocks, effectively avoiding the actual
movement of data. Subsequently, Fan et al. [11] further tuned Bruck
by refine [33] and [36] to eliminate the initial and final rotations.

Tunable radix-based collectives: Gainaru et al. [16] studied
logarithmic all-to-all algorithms with varying radices, but focused
on exploring various memory layout configurations. Taru et al. [31]
presented all-to-all with high radices. However, it does not conduct
performance analysis of varying radices nor provide a heuristic for
selecting radices. Andreas et al. [21] investigated the efficiency of
collectives, with emphasis on allgatherv, reduce-scatter, and allre-
ducewith varying radices. Their research indicates that high radices
work for shorter messages and low radices work for longer ones.

Hierarchical collectives: Jackson et al. [19] introduced a planned
non-uniform all-to-all, which transmits data from all processes on
the same node to a designated master. Subsequently, only the mas-
ter participates in a global exchange, reducing network congestion
and hence demonstrating gains for concise messages. Similarly,
Plummer et al. [29] segmented all processes into non-intersecting
groups. Within each group, processes transfer data to the leading
process, which then participates in the (sparse) all-to-all, improv-
ing scenarios where data load distribution is irregular but remains
constant over time. Bienz et al. [5] proposed a locality-aware all-
gather built upon the Bruck algorithm, which clusters processes
into groups of regions exhibiting low communication overhead.

8 CONCLUSION
We tackle the complex problem of optimizing the performance
of non-uniform all-to-all exchanges by proposing two novel algo-
rithms, ParLogNa and ParLinNa. ParLogNa is a parameterizable
algorithm that outperforms vendor-optimized MPI implementa-
tions on two production supercomputers. Building upon ParLogNa,
ParLinNa adds a hierarchical design to leverage the fast memory
buffers of modern systems. Splitting the communication into node-
local and global components further improves efficiency. Our ex-
periments with up to 16k MPI ranks on up to 512 compute nodes
show that ParLinNa outperforms both ParLogNa and the vendor-
provided MPI_alltoallv. To showcase the effectiveness of our al-
gorithms, we apply them to real-world applications, gaining nearly
10× speedup. In summary, our techniques can improve the perfor-
mance of a wide range of applications relying on non-uniform all-to-
all. Applications and vendors can easily adopt our open-source im-
plementations, offering an interface equivalent to MPI_Alltoallv
paired with tunable parameters for optimal performance.

9 ACKNOWLEDGEMENT
This work was funded in part by NSF PPoSS large grant CCF-
2316157 and NSF SHF Small grant CCF-2221811. We are thankful
to the ALCF’s Director’s Discretionary (DD) program for provid-
ing us with compute hours to run our experiments on the Polaris
supercomputer located at the Argonne National Laboratory. We
also extend our thanks to RIKEN for granting access to comput-
ing time on the Fugaku supercomputer at the RIKEN Center for
Computational Science.

REFERENCES
[1] MPICH Home Page. https://www.mpich.org.
[2] Argonne National Laboratory. 2024. Polaris | Argonne Leadership Computing

Facility. https://www.alcf.anl.gov/polaris.
[3] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata,

Ryan E Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Geof-
froy R Vallee. 2020. A survey of MPI usage in the US exascale computing project.
Concurrency and Computation: Practice and Experience 32, 3 (2020), e4851.

[4] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To Push or To Pull: On Reducing Communication and Synchro-
nization in Graph Computations. In Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC ’17).
Association for Computing Machinery, New York, NY, USA, 93–104. https:
//doi.org/10.1145/3078597.3078616

[5] Amanda Bienz, Shreeman Gautam, and Amun Kharel. 2022. A locality-aware
bruck allgather. In Proceedings of the 29th European MPI Users’ Group Meeting.
18–26.

[6] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weath-
ersby. 1997. Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on parallel and distributed systems 8,
11 (1997), 1143–1156.

[7] Chen-Chun Chen, Kawthar Shafie Khorassani, Quentin G. Anthony, Aamir Shafi,
Hari Subramoni, and Dhabaleswar K. Panda. 2022. Highly Efficient Alltoall and
Alltoallv Communication Algorithms for GPU Systems. In 2022 IEEE International
Parallel and Distributed Processing SymposiumWorkshops (IPDPSW). 24–33. https:
//doi.org/10.1109/IPDPSW55747.2022.00014

[8] Gerald Collom, Rui Peng Li, and Amanda Bienz. 2023. Optimizing Irregular
Communication with Neighborhood Collectives and Locality-Aware Parallelism.
In Proceedings of the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (SC-W ’23). Association
for Computing Machinery, New York, NY, USA, 427–437.

[9] JW Cooley and JW Tukey. 1965. An algorithm for the machine computation of
the complex fourier series, in mathematics of computation. April (1965).

[10] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages.

[11] Ke Fan, Thomas Gilray, Valerio Pascucci, Xuan Huang, Kristopher Micinski,
and Sidharth Kumar. 2022. Optimizing the Bruck Algorithm for Non-uniform
All-to-all Communication. In Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing. 172–184.

[12] Ke Fan, Kristopher Micinski, Thomas Gilray, and Sidharth Kumar. 2021. Exploring
MPI Collective I/O and File-per-process I/O for Checkpointing a Logical Inference
Task. In 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 965–972.

[13] Ke Fan, Steve Petruzza, Thomas Gilray, and Sidharth Kumar. 2024. Configurable
Algorithms for All-to-All Collectives. In ISC High Performance 2024 Research
Paper Proceedings (39th International Conference). 1–12. https://doi.org/10.23919/
ISC.2024.10528936

[14] Ahmad Faraj and Xin Yuan. 2005. Automatic generation and tuning of MPI
collective communication routines. In Proceedings of the 19th annual international
conference on Supercomputing. 393–402.

[15] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, concept, and design of a next generation
MPI implementation. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users’ GroupMeeting Budapest, Hungary,
September 19-22, 2004. Proceedings 11. Springer, 97–104.

[16] Ana Gainaru, Richard L. Graham, Artem Polyakov, and Gilad Shainer. 2016.
Using infiniband hardware gather-scatter capabilities to optimize mpi all-to-all.
In Proceedings of the 23rd European MPI Users’ Meeting.

[17] Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. 2021. Compiling data-
parallel Datalog. In Proceedings of the 30th ACM SIGPLAN International Conference
on Compiler Construction (Virtual, Republic of Korea) (CC 2021). Association for
Computing Machinery, New York, NY, USA, 23–35. https://doi.org/10.1145/

https://www.alcf.anl.gov/polaris
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1109/IPDPSW55747.2022.00014
https://doi.org/10.1109/IPDPSW55747.2022.00014
https://doi.org/10.23919/ISC.2024.10528936
https://doi.org/10.23919/ISC.2024.10528936
https://doi.org/10.1145/3446804.3446855
https://doi.org/10.1145/3446804.3446855


Parameterized Algorithms for Non-uniform All-to-all HPDC ’25, July 20–23, 2025, Notre Dame, IN, USA

3446804.3446855
[18] William Gropp and Ewing Lusk. 1996. User’s Guide for mpich, a Portable Imple-

mentation of MPI.
[19] Adrian Jackson and Stephen Booth. 2004. Planned AlltoAllv a Cluster Approach.

(2004).
[20] Andreas Jocksch, Matthias Kraushaar, and David Daverio. 2019. Optimized all-

to-all communication on multicore architectures applied to FFTs with pencil
decomposition. Concurrency and Computation: Practice and Experience 31, 16
(2019), e4964.

[21] Andreas Jocksch, Noe Ohana, Emmanuel Lanti, Vasileios Karakasis, and Laurent
Villard. 2020. Optimised allgatherv, reduce_scatter and allreduce communication
in message-passing systems. arXiv preprint arXiv:2006.13112 (2020).

[22] Qiao Kang, Robert Ross, Robert Latham, Sunwoo Lee, Ankit Agrawal, Alok Choud-
hary, and Wei-keng Liao. 2020. Improving all-to-many personalized communi-
cation in two-phase i/o. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–13.

[23] Sidharth Kumar and Thomas Gilray. 2019. Distributed Relational Algebra at Scale.
In International Conference on High Performance Computing, Data, and Analytics
(HiPC). IEEE.

[24] Sidharth Kumar and Thomas Gilray. 2020. Load-Balancing Parallel Relational
Algebra. In High Performance Computing: 35th International Conference, ISC
High Performance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceed-
ings (Frankfurt amMain, Germany). Springer-Verlag, Berlin, Heidelberg, 288–308.
https://doi.org/10.1007/978-3-030-50743-5_15

[25] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2016.
Datalography: Scaling datalog graph analytics on graph processing systems. In
2016 IEEE International Conference on Big Data (Big Data). IEEE, 56–65.

[26] Naeris Netterville, Ke Fan, Sidharth Kumar, and Thomas Gilray. 2022. A Vi-
sual Guide to MPI All-to-all. In 2022 IEEE 29th International Conference on High
Performance Computing, Data and Analytics Workshop (HiPCW). IEEE, 20–27.

[27] NVIDIA Corporation. 2022. Multinode Multi-GPU: Using NVIDIA cuFFTMp
FFTs at Scale. https://developer.nvidia.com/blog/multinode-multi-gpu-using-
nvidia-cufftmp-ffts-at-scale/.

[28] Sarthak Patel, Bhrugu Dave, Smit Kumbhani, Mihir Desai, Sidharth Kumar, and
Bhaskar Chaudhury. 2021. Scalable parallel algorithm for fast computation of

Transitive Closure of Graphs on Shared Memory Architectures. In 2021 IEEE/ACM
6th International Workshop on Extreme Scale Programming Models and Middleware
(ESPM2). IEEE, 1–9.

[29] Martin Plummer and Keith Refson. 2004. An lpar-customized mpi alltoallv for
the materials science code castep. Technical Report, EPCC (Edinburgh Parallel
Computing Centre) (2004).

[30] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Oda-
jima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi,
Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita, and Toshiyuki
Shimizu. 2020. Co-Design for A64FX Manycore Processor and "Fugaku". In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’20). IEEE Press, Atlanta, GA, USA, 1–15.

[31] Doodi Taru, Nusrat Islam, Gengbin Zheng, Rubasri Kalidas, Akhil Langer, and
Maria Garzaran. 2021. High Radix Collective Algorithms. Proceedings of EuroMPI
2021 (2021).

[32] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49–66.

[33] Jesper Larsson Träff, Antoine Rougier, and Sascha Hunold. 2014. Implementing
a classic: Zero-copy all-to-all communication with MPI datatypes. In Proceedings
of the 28th ACM international conference on Supercomputing.

[34] Manjunath Gorentla Venkata, Richard L Graham, Joshua Ladd, and Pavel Shamis.
2012. Exploring the all-to-all collective optimization space with connectx core-
direct. In 2012 41st International Conference on Parallel Processing. IEEE.

[35] Dennis Willsch, Madita Willsch, Fengping Jin, Hans De Raedt, and Kristel
Michielsen. 2023. Large-Scale Simulation of Shor’s Quantum Factoring Algorithm.
Mathematics 11, 19 (2023).

[36] Cong Xu, Manjunath Gorentla Venkata, Richard L Graham, YandongWang, Zhuo
Liu, and Weikuan Yu. 2013. Sloavx: Scalable logarithmic alltoallv algorithm for
hierarchical multicore systems. In 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing. IEEE, 369–376.

[37] Q. Zhou, B. Ramesh, A. Shafi, M. Abduljabbar, H. Subramoni, and D. Panda.
2024. Accelerating MPI AllReduce Communication with Efficient GPU-Based
Compression Schemes on Modern GPU Clusters. In ISC HIGH PERFORMANCE
2024.

https://doi.org/10.1145/3446804.3446855
https://doi.org/10.1007/978-3-030-50743-5_15
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/

	Abstract
	1 Introduction
	2 Background
	3 Parameterized Logarithmic Non-uniform All-to-all (ParLogNa)
	3.1 Tunable radix
	3.2 Two-phase communication
	3.3 Estimating temporary buffer size

	4 Parameterized Linear Non-uniform All-to-all (ParLinNa)
	4.1 Hierarchical ParLinNa algorithm phases
	4.2 Staggered and coalesced ParLinNa

	5 Evaluation
	5.1 Performance analysis of ParLogNa
	5.2 Performance analysis of coalesced and staggered ParLinNa
	5.3 Comparison with vendor-optimized MPI
	5.4 Standard distributions

	6 Applications
	6.1 Fast Fourier transform
	6.2 Graph Mining: path finding

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

