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ABSTRACT
In high-performance computing, collective communication is criti-
cal for facilitating comprehensive data exchange involving all pro-
cesses within an MPI communicator. Due to their inherently global
nature, many collective operations present scalability challenges,
particularly the all-to-all data shuffle with its quadratic communica-
tion pattern. Using a logarithmic communication pattern, the Bruck
algorithm was designed to provide communication efficiency for
all-to-all data shuffles involving short-sized messages. The Bruck
algorithm has been extensively used to facilitate global data shuffles
in a multi-CPU environment and is also part of the MPICH and
Open MPI implementations. This work presents the first investiga-
tion of using the Bruck algorithm for all-to-all communication in
multi-GPU systems using the NVIDIA Collective Communications
Library (NCCL). Our experimental study demonstrates that while
the Bruck algorithm exhibits superior performance for small-sized
messages in a multi-CPU environment, the same advantages are
not evident for multi-GPU environments. Furthermore, we describe
and compare an optimized Bruck algorithm implementation in
NCCL and compare it to NCCL’s default all-to-all and MPI-based
implementations. Finally, we discuss the challenges and opportu-
nities of implementing new multi-GPU collectives using NCCL’s
public-facing API.
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1 INTRODUCTION
Collective functions facilitate data exchange involving all processes
within an MPI communicator. Historically, collective functions
have been used extensively by irregular applications [21, 29, 35] to
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manage their non-uniform and often sparse workloads. Collectives
are generally known to be challenging to scale due to their global
nature. Among all collectives, the all-to-all data shuffle is notorious
for being the most difficult to scale [14, 27, 33] —primarily because
of its quadratic communication pattern.

Global data shuffle can be classified into two categories: uniform,
where processes exchange the same amount of data among each
other, and non-uniform, where exchanged message sizes can vary.
Both can be performed usingMPI’s built-in collectives MPI_Alltoall
and MPI_Alltoallv. These are used by a variety of applications, in-
cluding parallel training of large-scale neural networks [26], trans-
pose computations in parallel FFT computation [9] and parallel
sorting [30].

In this work, we focus on uniform all-to-all where data exchanges
are generally performed using two kinds of algorithms: spread-
out [13] or Bruck [6, 33]. Spread-out internally performs a linear
(w.r.t process counts) number of communication steps. It can be
visualized as a matrix-like communication pattern, where each
process sends data to all other processes in a collective manner.
For 𝑃 processes, each process communicates with the other 𝑃 − 1
processes, resulting in a total of 𝑃 × (𝑃 − 1) data exchanges. Based
on the circular shift and bit-wise exchange operations, the Bruck
algorithm, on the other hand, performs log2 𝑃 communication steps.
Reducing communication steps (relative to spread-out) comes at
the cost of sending more total data. Therefore, spread-out is used
for the exchange of large-sized messages, where communication
can be saturated by bandwidth, and Bruck is used for short-sized
messages, where performance improvements due to reduction in
communication rounds compensate for the cost of sending more
data. Popular implementations of MPI, MPICH [1] and OpenMPI [2,
11], both rely on a decision tree, which helps choose between the
two algorithms based on scale and workload.

In the last decade, we have seen a transition towards more het-
erogeneous HPC environments, where CPUs are coupled with high-
performance coprocessors such as GPUs. For example, modern HPC
systems such as Aurora [31], Perlmutter [19], and Frontier [4] all
rely heavily on GPUs to attain their peak FLOP performance. While
MPI can meet the communication needs of GPU-based nodes using
features like CUDA-aware MPI, specialized Remote Direct Mem-
ory Access (RDMA) communication libraries like the open source
NVIDIA Collective Communication Library (NCCL) [24] have been
on the rise. NCCL facilitates optimized data communication and
synchronization among multiple remote NVIDIA GPUs, making it
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an attractive choice for researchers, data scientists, and engineers
seeking to accelerate their applications by leveraging the immense
parallel processing capabilities of GPUs. Libraries like NCCL en-
able high-performance inter-GPU communication by reducing the
overhead incurred by unnecessary CPU/GPU data transfers. This
is especially true as message sizes increase, which is the use case
where GPU-to-GPU RDMA communication performs best. Being
open source, AMD and Microsoft have each implemented their own
NCCL-based multi-GPU communication libraries called RCCL [3]
and MSCCL [18], respectively.

While the Bruck algorithm is known to yield better performance
for small-sized messages in a multi-CPU environment [10, 20, 33],
no study has been performed to understand its impact in a multi-
GPU environment. In this paper, we investigate using the Bruck
algorithm for multi-GPU all-to-all communication to understand if
the algorithm benefits RDMAmulti-GPU collective communication.
We report an experimental study that compares different MPI and
NCCL implementations of all-to-all communication primitives. Our
analysis ultimately finds that the Bruck algorithm implemented
using the NCCL API does not offer the same performance improve-
ments in multi-GPU settings shown in multi-CPU settings with
MPI. Finally, we delve into details to explain why the Bruck algo-
rithm is not suited for multi-GPU environments. The contributions
of this work are the following:

(1) Development of an open-source implementation of the Bruck
algorithm using the NCCL framework with reproducible
performance tests using the nccl-tests benchmark suite 1.

(2) Performed a comparative study of the two main algorithms
used in multi-CPU collectives: spread-out and Bruck for
small message sizes.

(3) Described a NCCL-based Bruck implementation and per-
formed scaling studies to compare this against the default
NCCL implementation and MPI multi-CPU implementations.

(4) Discussed the challenges and benefits of using the public-
facing NCCL APIs to develop optimized communication al-
gorithms.

This study holds significant importance for the HPC community
as it sheds light on the efficacy of the Bruck algorithm in the context
of a multi-GPU environment, a domain where its performance had
not been comprehensively evaluated before. The negative result,
indicating that the Bruck algorithm does not offer the anticipated
performance improvements for short-sized messages in multi-GPU
scenarios, is valuable for the community and provides a deeper
understanding of the complexities associated with collective com-
munication in multi-GPU scenarios, guiding future research toward
more efficient solutions.

2 BACKGROUND
In this section, we summarize important applications that require
and use all-to-all communication and describe the basic and opti-
mized versions of the Bruck algorithm. While the algorithm has
been adopted by state-of-the-art MPI implementations for multi-
CPU communication, there is no previous study that assesses its
performance in multi-GPU settings.

1https://github.com/ComputingElevatedLab/nccl-bruck

Figure 1: A demonstration of the spread-out algorithm. This
algorithm performs a linear number of communication steps
wherein processes send one data block directly to a target
destination process per communication round, following a
round-robin sequence. The send-block for each communica-
tion round is indicated by a thick cell border.

2.1 All-to-all Communication
In parallel computing, there exist several fundamental collective
communication patterns. An all-to-all operation refers to every
process sending data to every other process and receiving data
from every other process. There are many use cases for all-to-
all communication, with some simple examples including parallel
FFT [32], computing matrix transposes, and accelerating parallel
relational algebra at scale [15, 16].

In uniform all-to-all, the amounts of data being sent and received
by each process are fixed, whereas in non-uniform all-to-all, the
amounts of data sent and received may be variable. Some possible
approaches for achieving this pattern are the point-to-point, spread-
out, and Bruck algorithms. In point-to-point communication, each
process sends and receives an entire message directly to every other
process in 𝑃−1 communication steps, where 𝑃 is the number of pro-
cesses. Destination processes are chosen in a round-robin fashion
to avoid a bottleneck from multiple processes attempting to send
data to the same destination at once. While simple to implement,
this approach can lead to network contention on the receiver side
as the number of processes increases. The spread-out algorithm is
the standard linear-time implementation of all-to-all data shuffle
adopted by production MPI libraries and is used for both uniform
and non-uniform data exchanges. Unlike point-to-point, processes
only send one data block directly to a target destination process
per communication round. This algorithm also takes 𝑃 − 1 commu-
nication steps. A diagram of the spread-out algorithm can be seen
in Figure 1.

Libraries like Unified Collective Communication (UCC) [8] sup-
port distributed heterogeneous communication by selecting the
best implementation available (e.g., using NCCL or MPI) for a spe-
cific use case based on various runtime heuristics. Our experimental
study will shed some light on how some of those heuristics related
to all-to-all collectives could be defined based on message size and
scale.

2.2 Bruck Algorithm
The Bruck algorithm for all-to-all communication within message-
passing systems was first published in 1997 [7]. Bruck differentiates
itself from alternative all-to-all communication algorithms by mini-
mizing the total number of internal communication steps involved
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Figure 2: A demonstration of the basic Bruck algorithm. P0-3
are each processes with their own send and receive buffers.
The arrows represent information being passed (via send
and receive operations), and thick cell borders indicate the
send-blocks for that communication round.

Figure 3: A demonstration of how the modified Bruck algo-
rithm omits the inverse rotation step but achieves the same
final result. Avoiding the final rotation is possible due to
slight tweaks in how data is copied during previous steps.

in the all-to-all transaction. It reduces them from O(P) to O(log P)
communication steps, where 𝑃 represents the number of processes
or compute units. This is possible by transmitting a larger aggregate
data size while distributing it over a reduced number of iterations.
This strategy offers significant advantages when dealing with data
messages of relatively small sizes (16b to 2K) [5]. By leveraging the
increased bandwidth available by handling smaller messages, the
algorithm utilizes available computing resources more efficiently.
This enables the Bruck algorithm to process small data messages
efficiently, improving overall performance and reducing execution
time in communication-bound scenarios. Figure 2 demonstrates
how Bruck performs log(4)=2 communication steps for 4 processes,
as opposed to the 3 spread-out communication steps shown in
Figure 1.

As a testament to its effectiveness, the Bruck algorithm has been
widely adopted in state-of-the-art MPI implementations, including
MPICH [33] and Open MPI [12], specifically to implement the uni-
form all-to-all collective communication operation (MPI_Alltoall).
The basic Bruck algorithm (see Figure 2) has three steps, includ-
ing an initial local rotation, log(P) global communications, and a
final local inverse rotation [7]. The modified inverse Bruck algo-
rithm enhances the basic Bruck algorithm by removing the final
local inverse rotation step [34]. This removal is possible through
subtle adjustments in data copying within earlier phases, which

preclude the need for the final local inverse rotation. Figure 3 il-
lustrates the difference between the modified inverse Bruck and
the basic variant. The zero-copy variant further improves the algo-
rithm by eliminating the need for explicit data copying in uniform
all-to-all communication, enabling in-place data access during com-
munication operations. Specifically, when performing a uniform
all-to-all operation in MPI_Alltoall, the zero-copy Bruck algorithm
can achieve a significant performance improvement [34].

3 ALL-TO-ALL COLLECTIVE
IMPLEMENTATIONS

Recent work based on the modified Bruck [10] has been shown to
outperform the linear-step spread-out implementation in a multi-
CPU setting. For this reason, we hypothesized that the Bruck al-
gorithm could also be promising for achieving faster and more
efficient all-to-all communication in multi-GPU scenarios. We were
particularly interested to see how it performs at scale, given that
modern HPC clusters are now being built with thousands of total
GPUs. We begin this section by presenting the existing implemen-
tation of all-to-all data exchange within NCCL and then describe
our implementation of the Bruck algorithm within NCCL.

3.1 Default NCCL All-to-all Implementation
As of the NCCL 2.18.1 documentation [23], there does not exist an
explicitly named implementation of all-to-all data shuffle within
NCCL. Rather, all-to-all communication is achieved by defining a
for-loop of NCCL send and receive operations wrapped within a
ncclGroup. This is conceptually equivalent to the spread-out algo-
rithm, as it takes a linear number of communication rounds. For
the sake of clarity, even though NCCL does not provide a named
implementation for all-to-all data shuffle, we will refer to this as the
default NCCL all-to-all for the remainder of this paper, expressing
it in Algorithm 1. As can be seen in the algorithm, there is a linear-
step loop (w.r.t the number of processes) in line number 5, where for
each iteration, a process sends and receives data from some other
process. A key point to note is the usage of ncclGroupStart and
ncclGroupEnd, used to wrap the loop of communication rounds.

Algorithm 1 Default NCCL all-to-all implementation
1: 𝑃 ← total number of processes.
2: 𝑠𝑒𝑛𝑑𝑏𝑢𝑓 ← buffer for data to be sent.
3: 𝑟𝑒𝑐𝑣𝑏𝑢𝑓 ← buffer to store received data.
4: ncclGroupStart()
5: for 𝑖 ∈ [0, 𝑃] do
6: send data in 𝑠𝑒𝑛𝑑𝑏𝑢𝑓 [𝑖] to i;
7: receive data from i into 𝑟𝑒𝑐𝑣𝑏𝑢𝑓 [𝑖];
8: end for
9: ncclGroupEnd()

The implementation of this collective in NCCL is interesting due
to every send and receive operation being wrapped into one nc-
clGroup, a concept that MPI has no direct equivalent for. ncclGroups
are defined by their start and end functions, which queue any inter-
mediate NCCL operations to be executed after the group ends. This
approach enables the NCCL runtime to capture the full communi-
cation scenario and apply optimizations. The NCCL documentation
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states that groups are used for ’managing multiple GPUs from one
thread (to avoid deadlocks), aggregating communication opera-
tions to improve performance, or merging multiple send/receive
point-to-point operations’ [22].

A ncclGroup execution is treated as a single communication,
avoiding the GPU kernel launch overhead that would be associ-
ated with executing each communication operation individually.
Despite the default NCCL all-to-all appearing to use the spread-out
algorithm, internal runtime optimizations may potentially merge
the calls to improve performance.

3.2 NCCL Bruck Implementation
In Algorithm 2, we present the Bruck algorithm as implemented
using NCCL. There are two key points to note in this algorithm:

(1) The total number of iterations performed here is log 𝑃 .
(2) The ncclGroupStart and ncclGroupEnd wrap each send

and receive operation individually (see line number 17 and
19), as opposed to encompassing the entire for loop in Algo-
rithm 1.

The usage of ncclGroups can be explained by further examining the
Bruck algorithm. As opposed to the spread-out (or point-to-point)
implementation of Algorithm 1, Bruck is a store-and-forward al-
gorithm that takes log(𝑃) communication steps. This means that
both send (𝑆) and receive (𝑅) data buffers are used for sending,
receiving, and storing data during intermediate communication
rounds. Unlike spread-out, buffers 𝑆 and 𝑅 are both involved in
the communication step, as some received data blocks will have to
be present for a later communication step. This store-and-forward
nature of the algorithm imposes constraints on the ordering of the
communication rounds. Unlike the linear-step implementations,
Bruck must maintain an explicit communication ordering, where
iteration 𝑖 + 1must occur after iteration 𝑖 in physical time. The algo-
rithm can also be seen in Figure 3, which shows that the different
communication phases must be executed in a sequential order.

As discussed earlier, once a ncclGroup enqueues a set of send
and receive operations, the NCCL runtime will be responsible for
scheduling those operations, and strict ordering cannot be enforced.
Therefore, wrapping all of the send and receive operations produced
by the Bruck algorithm into a single ncclGroup will lead to incorrect
results. For this reason, we could only create a ncclGroup for each
pair of send and recv operations (see Algorithm 2, line number 17
and 20). In the evaluation section, we discuss how this requirement
affects the performance of the Bruck algorithm for multi-GPU all-
to-all collective communication using NCCL.

4 EVALUATION
In this section, we report experimental studies to assess the per-
formance of uniform all-to-all collectives for small-sized messages
using the Bruck algorithm in both multi-CPU and multi-GPU set-
tings. Furthermore, we compare implementations of the Bruck
algorithm using both NCCL (multi-GPU) and MPI (multi-CPU) to
understand if and when this algorithm would be effective for multi-
GPU collectives. We performed our experimentation on the Polaris
supercomputer [17] operated by the Argonne Leadership Comput-
ing Facility at Argonne National Laboratory. Polaris consists of 560
nodes, each containing a single 2.8 GHz AMD EPYC Milan 7543P

Algorithm 2 NCCL Bruck algorithm
1: 𝑃 ← total number of processes.
2: for 𝑖 ∈ [0, 𝑃] do
3: 𝑅 [𝑖] = 𝑆 [(𝑝 + 𝑖)%𝑃] // 𝑆 and 𝑅 are send and receive buffers,

and 𝑝 is rank id of each process;
4: end for
5: allocate temporary buffer 𝑇 with SC × (𝑃 + 1)/2 elements; //

SC is number of elements per data-block.
6: for 𝑘 = 1; 𝑘 < 𝑃 ; 𝑘 <<= 1 do
7: allocate send indexes array SB with (𝑃 + 1)/2 integers;
8: number of send data-blocks NB← 0;
9: for 𝑖 ∈ [𝑘, 𝑃] do
10: if 𝑖 & 𝑘 then
11: NB[NB] ← 𝑖;
12: copy 𝑅 [𝑖] into 𝑇 [NB];
13: NB← NB + 1;
14: end if
15: sendproc← (𝑝 + 𝑘) % 𝑃 ;
16: recvproc← (𝑝 − 𝑘 + 𝑃) % 𝑃 ;
17: ncclGroupStart()
18: send data in 𝑇 to sendproc;
19: receive data from recvproc into 𝑆 ;
20: ncclGroupEnd()
21: for 𝑖 ∈ [0, SB] do
22: copy 𝑇 [𝑖] into 𝑅 [SB[𝑖]];
23: end for
24: end for
25: for 𝑖 ∈ [0, 𝑃] do
26: 𝑅 [𝑖] = 𝑅 [(𝑝 − 𝑖 + 𝑃) % 𝑃] // final rotation;
27: end for
28: end for

32-core CPU, 512 GB of DDR4 RAM, and 4 NVIDIA A100 40GB
GPUs connected via NVLink. Our software stack included CUDA
11.8, which was provided via NVHPC 23.1 and with NCCL 2.16.4.

4.1 MPI-based Multi-CPU All-to-all
We performed a weak scaling study of a uniform all-to-all commu-
nication pattern in a multi-CPU setting, comparing two algorithms:
spread-out and Bruck. For this study, the total message size every
MPI process sends varies proportionally with the number of pro-
cesses involved in the collective operation. For example, looking
at the first plot in Figure 4, the total amount of data sent by every
process varied from 64 × 16 bytes at 64 processes to 512 × 16 bytes
at 512 processes. The results reported in Figure 4 show that the
Bruck algorithm performs best for small message sizes, especially
at larger scales. This is due to its more efficient communication
pattern, which groups smaller messages into fewer large data ex-
changes. However, the advantages diminish as messages become
larger. This experimental study serves as the motivation for our
experimentation in multi-GPU settings, where we wanted to val-
idate if the Bruck algorithm would continue to perform well for
small-sized messages.
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Figure 4: Weak scaling study comparing MPI all-to-all meth-
ods, our basis for investigating Bruck performance in NCCL.
The Bruck implementation performs significantly better for
small-sized messages and at larger scales than spread-out.
This advantage, however, becomes much smaller for large-
sized messages.

4.2 NCCL-based Multi-GPU All-to-all
For our multi-GPU implementation of the Bruck algorithm, we used
NVIDIA’s NCCL library. NVIDIA provides an open source tool for
benchmarking NCCL collectives called nccl-tests [25]. It provides
many useful features, such as a configurable number of warm-up
and benchmark iterations, varying message sizes, result verification,
and so on. For these reasons, we used nccl-tests to perform our
experiments. The nccl-tests benchmark suite first prepares the GPU
buffers and then passes them to a test function. The test function is a
generic interface that links to a range of different implementations.
This ensures that all of the tests receive the same data to start
with. The process of adding new algorithms to the benchmark
consists of creating a separate test function for each new algorithm.
Since everything is implemented as a test function, the timer can
start and stop in the same place across all algorithms. All existing
tests conclude once the GPU buffers contain the final result. We
performed the following four sets of experiments:

(1) Default NCCL All-to-All - this is the default implemen-
tation of all-to-all currently provided by NCCL. This linear-
step implementation is directly based on Algorithm 1.

(2) NCCL Modified Bruck - this is our implementation of mod-
ified Bruck using the public-facing NCCL APIs. It performs a

logarithmic number of communication rounds and is directly
based on Algorithm 2.

(3) MPI Spread-out - an implementation of spread-out that
relies upon the multi-CPU data exchange protocol.

(4) MPI Modified Bruck - an implementation ofmodified Bruck
that relies upon the multi-CPU data exchange protocol.

We note that for the latter two implementations, we performed
a data offload (i.e., memcpy) between GPU and CPU before per-
forming the MPI collective. This approach is useful to understand
the trade-offs of using direct multi-GPU collective operations vs.
offloading the data to CPUs to execute multi-CPU (MPI) collectives
instead.

The experimental study reported in Figure 5 compared the MPI
all-to-all implementations and the default NCCL all-to-all perfor-
mance to our modified Bruck implementation with message sizes
ranging from 16𝑏 to 2𝐾𝐵. The experiments were run on 16, 32, 64,
and 128 nodes resulting in data collected with 64, 128, 256, and 512
GPUs. All experiments were performed using one MPI process per
GPU, measuring average execution times across MPI ranks, using
send and receive buffers of type ncclChar, non-blocking communi-
cation, and setting the NCCL_PLUGIN_P2P environment variable
to UCX [28] (performance without the UCX plugin reported the
same overall trends). As a note, although it is possible to use one
MPI process per node to manage four GPUs each, a best practice is
to let each MPI process be responsible for managing exactly one
GPU. Default configuration values were left unchanged unless a
different value resulted in a performance improvement, as in the
case of setting a non-default NCCL_PLUGIN_P2P value. For all
experiments, the number of warm-up iterations was set at 100,
and the number of benchmark iterations was set at 500. Increasing
the number of samples measured helped reduce the influence of
outliers.

In Figure 5, we report the experimental results of our weak scal-
ing study comparing both multi-CPU and multi-GPU performance
for uniform all-to-all collectives. For multi-CPU settings, we also
include the time to load and unload data between CPU and GPU.
This is done to understand when it would be convenient to rely
on direct multi-GPU collective vs. multi-CPU MPI collectives. We
make two key observations: Direct GPU-to-GPU communication is
slower at scale when compared to offloading the same data to the
CPU and performing the same MPI all-to-all collective across CPUs.
This trend is validated by the red trendline in all figures, which
corresponds to multi-CPU-based modified Bruck– it consistently
outperforms all other approaches at a larger scale. (ii) Surprisingly,
the default NCCL-based all-to-all method demonstrates better per-
formance than our Bruck implementation in NCCL. As highlighted
in the next section, such performance loss can be attributed to
the overhead associated with GPU kernel launches that take place
during the execution of each separate ncclGroup.

5 DISCUSSION
As stated previously, the Bruck algorithm consists of various phases:
an initial data rotation, a communication phase, and a final data
rotation. Each of these phases is dependent on the result of the pre-
vious phase, and this is true for each of the communication steps
as well. Each Bruck communication step is a sendrecv operation
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Figure 5: Weak scaling study comparing multi-GPU and multi-CPU all-to-all methods. In multi-GPU settings, the default NCCL
all-to-all implementation always outperforms the Bruck implementation. Furthermore, at a larger scale, offloading data to the
CPU and using an MPI multi-CPU implementation yields better performance for those message sizes.

that requires some amount of data to be copied from the receive
buffer into a temporary buffer beforehand. This makes Bruck an
inherently serial algorithm, and disqualifies our NCCL implementa-
tion from using a single ncclGroup to aggregate and optimize all of
the communication operations at once. In this scenario, we lose the
opportunity for the NCCL runtime to perform aggregate communi-
cation optimizations, and we also incur the overhead of repeatedly
creating and executing separate ncclGroups, all while the operation
progresses synchronously. In contrast, the default NCCL all-to-all is
able to execute its entire communication scenario asynchronously
with exactly one ncclGroup, incurring only a constant amount of
kernel launch overhead.

Furthermore, for very small message sizes, our experimental
results suggest that it is faster to copy device (GPU) memory into
host (CPU) memory before using MPI to perform data exchanges.
Message sizes are an example of a heuristic that can help commu-
nication libraries determine at runtime which API and collective
implementation will perform best for the given scenario.

We contacted an NVIDIA employee who works on distributed
multi-GPU applications to discuss our findings. They explained
that NCCL may optimize collectives internally and that the process
is not transparent to end-users. The conversation reiterated the
importance of using ncclGroups as well as the fact that for such
small message sizes, using MPI tends to be faster than using NCCL
directly. The reason for this is that GPU kernel launches take a

relatively long time compared to data transfer and MPI communica-
tion. Our primary takeaways from the conversation were that our
results appear reasonable and that a new all-to-all implementation
would generally have to be implemented within NCCL itself to be
competitive with the public-facing API.

6 CONCLUSION
This work presents the first experimental study to assess the perfor-
mance of the Bruck algorithm for uniform all-to-all communication
in multi-GPU settings using NVIDIA’s NCCL library. We described
how the implementation of the Bruck algorithm in NCCL lever-
ages ncclGroups, which is a mechanism that allows for multiple
communication primitives (i.e., send and receives) to be aggregated,
optimized, and executed asynchronously by the NCCL runtime.
We presented an experimental study that also includes multi-CPU
(MPI) all-to-all collective operations to understandwhen it is ideal to
rely on multi-GPU RDMA collective communication vs. offloading
data to the CPU and performing MPI collectives. Our experiments
conclude that the Bruck algorithm for all-to-all communication
does not outperform the default NCCL all-to-all implementation.
We have demonstrated that this is clearly in contrast to Bruck’s
multi-CPU performance, which outperforms its point-to-point and
spread-out alternatives for the same message sizes.
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This discrepancy is explained by the fact that the Bruck algo-
rithm requires multiple phases of data exchanges that need to be
executed in a strict sequential order. When implementing strict
communication ordering using NCCL, it was required that we use
a separate ncclGroup for each communication phase, eventually
introducing significant overhead due to each ncclGroup launching
a separate GPU kernel.

The insights from this study are important for understanding
how collective operations perform in multi-GPU settings and will
help the community set proper heuristics in future implementa-
tions to determine the best API and algorithm to use for a given
communication workload and scale.
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